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Preface

Sooner or later, but probably sooner, every computer scientist must face the question:
When will the project be finished? More often than not, the answer to that question,
though sincerely given, will turn out to be a lie. My intial answer to the question when I
thought to finish my graduation project was September — of 2003, that is.

Surely, I thought when I was ready to start writing this report in the early summer of
2003 — about a year after I had approached Cees Witteveen with the question whether
there were any graduation projects within the Collective Agent Based Systems (CABS)
research group — I won’t need more than a month or two to write my report? Since then,
however, I have discovered that most of the actual research work is done while writing the
report.

Still, the ten months it finally took is a long time to spend on a single report. One excuse
is that in the meantime, me and my supervisors have written a number of research papers
on the subject, at least one of which has been accepted for publication. A second reason
why it took me so long to finish is that the size of the report has gotten rather out of hand,
even though I endeavored to write concisely and (mostly) to the point. Fortunately, to gain
an understanding of the research presented in this report, it is not necessary to read the
entire report page-to-page. Chapters 3 and 4, and the second half of Chapter 5 — together
comprising the more technical parts of this report, containing e.g. details of algorithms —
require only a glance to keep with the main account (reading only introductory sections of
those chapters should suffice).

This report was not written by me locking myself in my room and reappearing 20
months later with the finished report. Rather, it has been a collaboration between me and
my supervisors. Therefore I would like to thank Jeroen Valk for his boundless enthusiasm
on multi-modal logistic problems and autonomous planning agents, and Cees Witteveen for
general guidance and support, and also for furthering the research by presenting familiar
problems from a different point of view.

Delft, April 2004
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Abstract

We consider the problem of coordinating autonomous agents that have to achieve a joint
task, consisting of a set of (elementary) tasks, partially ordered by a set of precedence con-
straints. Each agent is allocated a non-overlapping subset of tasks, for which it needs to
make a plan. Precedences may exist between tasks allocated to the same agent (intra-agent
precedences), or between tasks allocated to different agents (inter-agent precedences). Be-
cause of the latter set of constraints, agents are dependent on each other, and coordination
is required for successful joint operation.

We assume that an agent needs to make a plan to execute its subset of tasks. To
guarantee an agent full autonomy in the planning of its tasks, we require that planning
and coordination be separated. In the literature on multi-agent coordination, no approach
yet exists where agents can (i) work together on a joint task, and (ii) where planning
and coordination are separated. Therefore, we present a new pre-planning coordination
framework in which agents receive a set of additional constraints prior to planning, such
that subsequently the joint plan will always be feasible, regardless of the plans produced
by the individual agents.

The coordination problem, which is to find a minimal set of additional constraints such
that a feasible joint plan is guaranteed, is computationally hard. The problem of verifying
whether a given set of additional constraints is a coordination solution (the coordination
verification problem) is co-NP-complete. The coordination problem itself is Σp

2-complete.
Finally, we can show that it is highly unlikely that constant-ratio approximation algorithms
exist for the coordination problem.

Nevertheless, we have designed approximation algorithms that return very efficient
solutions when applied to the multi-modal logistics problem (which consists of delivering
packages between and within cities). In fact, our pre-planning coordination algorithms (i)
outperform state-of-the-art (multi-agent) planning systems on a set of benchmark logistic
problems, and (ii) show that by efficiently separating planning from coordination, existing
(single-agent) planning tools can be reused to solve multi-agent planning problems.
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Chapter 1

Introduction

Part of the inhumanity of the computer is that, once it is competently pro-
grammed and working smoothly, it is completely honest. — Isaac Asimov

1.1 Autonomous Agents

Foolishly, I thought my curt reply would be self-explanatory. However, when I answered:
“multi-agent coordination” in response a friend’s question “So what do you do at the
university?”, I only received a blank look in return; perhaps a courteous nod, at the most.
Neither did any further words from me seem to enlighten, until I gave in to the temptation
to illustrate the concept of an intelligent agent by mentioning the Terminator movies.
Finally, recognition dawned.

Of course, typical multi-agent research and multi-agent applications are much more
mundane than huge robots stomping around in a post-apocalyptic wasteland. Yet this is
the kind of image that clings to the research area of artificial intelligence. Even in 1971,
as Fikes and Nilsson [10] presented their STRIPS system that would shape the minds of
AI researchers, Stanley Kubric’s 2001: A Space Odyssey had already shaped the public
image of artificial intelligence three years earlier: that of advanced, untrustworthy, or even
malicious computers.

In A Space Odyssey, HAL is the board computer of a spaceship. Designed to assist
the astronauts, it have been given intelligence — and a mind of its own — to be able to
figure out what its duties are and how they should be performed. However, the thinking
computer finds a goal of its own, namely to dispose of the crew.

Perhaps surprisingly, the above mentioned science fiction movies have a lot in common
with the current research into ‘intelligent agents’. Like HAL, an intelligent software agent
is designed to assist humans in difficult or tedious tasks. Also, an agent has a certain
amount of autonomy that allows it to operate without constant input from the user.

Broadly speaking, there are two differences between the above-mentioned science fiction
movies and multi-agent research. First, and unsurprisingly, the visions of Hollywood pro-
ducers outrageously exceed current (and near-future) capabilities of artificial intelligence
technology. The second difference is more subtle and has to do with agent autonomy.

Literally, the word ‘autonomous’ means self-ruling; this we interpret as the freedom to
choose your own goals. Kubric’s HAL takes this freedom very far. Although it as been

1



2 CHAPTER 1. INTRODUCTION

given goals during design (to assist the astronauts), it rejects these goals and forms goals
of its own. This situation is similar to the relation between man and God. Although God
created man, and gave him a set of rules to live by, he also gave him free will, allowing
man to do all that God has forbidden.

An agent designer does not bestow his creation, the agent, with free will. An au-
tonomous agent may formulate its goals, but these goals will always contribute to the
purpose for which the agent was designed.1 Thus, we claim that the autonomy of an agent
is the freedom to refine its goals. Not giving agents free will makes economic sense: why
put a lot of effort into creating something that doesn’t do what you want?2

An interesting question is whether it is at all possible to create an agent with a free will.
In other words, can we create a conscious agent (or computer, or other artifact)? This
question is a matter of considerable philosophical debate (e.g.[13, 19, 20, 26]). Opponents
point out that computers merely manipulate strings of ones and zeros: given a sequence of
bits (program plus data), a microprocessor produces some other sequence of bits (output).
No conscious understanding takes place at any point in this procedure [19]. Proponents
argue that if we were capable of manufacturing a brain, or if we were capable of replacing
key components in a living brain with artificial ones, would we not have created artificial
consciousness?3

Whatever the outcome of this debate (if ever there will be one), for the foreseeable
future, computers and agents will do what they are told (programmed) — and only what
they are told.

1.2 Autonomy and the Need for Coordination

Living in a present-day Western society, we enjoy a fair deal of autonomy in our day-to-day
activities: we can go out for a stroll, we can play the music we like. However, living in
a society with equally autonomous individuals places restrictions on our autonomy; we
can’t take a stroll down the fast lane of a highway, and we can’t play our favorite music at
maximum volume at 2:00 AM in the morning. Thus, the freedom of an individual must be
restricted; coordination is the process in which the appropriate restrictions are formulated.

In a society of any size, it is e.g. infeasible to negotiate with every car owner over
whether or not I should be allowed to walk down the highway this afternoon. Instead,
coordinated behaviour is ensured (or at least attempted) by a set of rules, laws and social
conventions. These rules aim to achieve coordination while at the same time maximizing
the autonomy of the individual.

There is actually some relevance to the above discussion (in case you were wondering
whether I was just suffering from a particularly bad case of writer’s block): the gist of
the above is also applicable to multi-agent systems if we replace the words ‘society’ and
‘individual’ with respectively ‘multi-agent system’ and ‘agent’. In particular, the above
means to convey the fact that if agents are autonomous in deciding which actions to take,

1If the software (the agent) contains bugs, then we take the bugged code as the ‘purpose’ of the agent,
and, furthermore, if a programmer would design an agent specifically to have free will, or intelligence, then
we take this to be the agent’s purpose.

2“Yes alright, no need to rub it in!” – God
3Alternatively, we could ask ourselves if we humans are truly conscious [26]. Indeed, does it at times

not seem that free will is merely an illusion?



1.3. COORDINATING MULTIPLE AGENTS 3

then this autonomy might need to be restricted (i.e., through coordination), if agents are
to co-exist if not in harmony, then at least without interfering with each other.

1.3 Coordinating Multiple Agents

There are many reasons why the actions of multiple agents need to be coordinated. This
ground has not so much been covered as trampled by introductory chapters of earlier
publications in the Distributed Artificial Intelligence (DAI) community. To summarize
these reasons: either an agent finds himself in the situation where other agents can hinder
him in the accomplishments of his goals (e.g. by physically getting in the way), or an agent
may need other agents to be able to perform his tasks (e.g., some tasks may require the
capabilities of more than one agent). In either case, the behaviour of other agents must
be taken into account; or, in other words, agents need to coordinate their activities. How
other-agent behaviour must be taken into account depends on the type of agent application.

Keeping with the sci-fi theme, consider the example multi-agent system of a number
of Mars exploration robots (similar to the work by Steels [23]). Suppose that there are a
number of homogeneous explorer robots and a base (agent). The explorer robots collect
precious rocks from the surface and return them to the base agent, where they are ana-
lyzed. The explorer robots have a certain degree of autonomy: they need to figure out for
themselves how to best achieve their goal of bringing back high-quality rocks to the base.

In this example, we can identify several coordination issues. First, the mining robots
must avoid looking for rocks in exactly the same spot. Second, they must avoid colliding
into each other while moving around on the planet surface. Third, only one robot at a
time can unload his rocks at the base.

The Mars explorer robots form what we term an intra-organizational multi-agent sys-
tem. Although all agents are designed to perform their goals as best they can, they will
not try to achieve their goals at the expense of other agents, since all agents have been
designed by one organization with the purpose of achieving the best result for this orga-
nization. This means that certain coordination issues are not relevant for this multi-agent
system. For instance, there should be no contention among the explorer robots about who
may explore the most promising spot; neither does a rock-laden agent, on his way back
to base, have to worry about being ambushed by other agents who are out to steal his
precious stones.

In inter-organizational multi-agent systems, there are different coordination issues.
Suppose that in the above example, each agent works for a different organization. Al-
though agents will probably not be programmed to steal, there certainly will be negoti-
ation about who gets the best spots (assuming of course that certain areas can be iden-
tified as promising). In other words, the devision of the ‘spoils’ over the agents is im-
portant in inter-organizational multi-agent systems, while it is not of particular interest in
intra-organizational ones. In general, the difference between inter- and intra-organizational
multi-agent systems is not just limited to whether agents are self-interested or not. Agents
in different organizations are also less likely to operate in the same space or make use of
the same resources.

As an example of an inter-organizational multi-agent system, consider a multi-modal
transportation problem where packages must be delivered between locations. In Figure 1.1,
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Figure 1.1: Different vehicles and their capabilities to transport packages across Europe.

we have three transportation companies, each of which can travel only certain routes. To
deliver a package from London to Berlin, two transportation companies need to cooperate,
e.g, the Ferry and the Truck. First, the ferry must take the package from London to
Amsterdam, then a truck can drive the package from Amsterdam to Berlin.

In this example, we can associate an agent with each transportation company. The
goal of an agent is to find a favorable schedule of activities for its transportation company.
Coordinating with other agents can include agreeing when a package will be delivered. For
instance, for the London-Berlin package, the agent of the trucking company can try to
negotiate with the agent responsible for the boat to deliver the package in Amsterdam at
12:00 the next day.

We believe that in the future, inter-organizational multi-agent systems will become more
important. Since the second world war, trade and globalization have steadily increased.
Inevitably, this leads to increased specialization [3] as companies focus on what they do
best and outsource the rest [18]. Outsourcing activities to other companies, however,
introduces the need to coordinate with these companies. Efficiency considerations will lead
to automation of (some of) the coordination activities. In case the coordination activities
require a certain amount of autonomy from the coordinators, i.e., the coordinators must
be able to independently decide how to coordinate, then the coordination activities can be
performed by agents.
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1.4 Contributions of this Research

Our research differs from other multi-agent research in that we study inter-organizational
multi-agent systems in which agents wish to perform their own tasks independently, yet
they must perform a joint task that creates dependencies between the agents.4 Mainly, we
focus on the following coordination problem, presented in Chapter 2: how to guarantee that
agents can successfully work together, if we grant agents full autonomy in their planning
activity, that is, if agents decide how to perform their tasks independently of other agents?
The solution we promote is to sufficiently constrain agents prior to planning.

In Chapter 3, we analyze the computational complexity of this coordination problem.
It turns out that the problem is too hard to allow fast algorithms that always return
the optimal solution. Therefore, the best we can hope for is to find efficient heuristic
approximation algorithms. In Chapter 4, we present a number of approximation techniques,
and we identify how these approximation techniques can be extended to enable agents to
be autonomous also during the coordination phase.

We have tested some of these approximation techniques on a benchmark set of multi-
modal logistics planning problems from the AIPS5 2000 competition, and we present the
results in Chapter 6. It turns out that our pre-planning-coordination approach outperforms
all competitors of the AIPS. Also, it shows that by separating planning from coordination,
difficult multi-agent planning problems can be solved using very simple single-agent plan-
ning tools, in fact, using planning tools we have written ourselves — need we say more?

4An earlier study [25] showed that for other research, agents either share a joint task, or they work
independently.

5Artificial Intelligence Planning and Scheduling competition.
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Chapter 2

A Task-Oriented Coordination
Framework

Everything that is really great and inspiring is created by the individual who can
labor in freedom — Albert Einstein

What sets a software agent apart from any garden-variety piece of software is the agent’s
ability — and its responsibility — to decide on its own the best course of action. That
is, instead of having all its actions pre-programmed, the agent can decide for itself how to
accomplish its goals. Other than this attribute of agency, the agent’s autonomy, researchers
are not in agreement on the definition of an agent.1

Clearly though, the characteristics of the agent, and of the environment in which it is
designed to operate, determine if and how agents need to be coordinated2. For example,
in an intra-organizational multi-agent system (i.e., in which all agents serve the same
organization), with agents operating in close physical proximity, the location of each agent
is relevant to the other agents. If agent A1 is currently at location loc3, then coordination
must ensure that other agents do not try to enter loc3 while A1 is still there, or alternatively,
that agent A1 moves out of the way in case they do try.

We on the other hand study agents in an inter-organizational setting, i.e., where agents
may belong to different organizations. Of course, inter-organizational multi-agent system
could still mean almost anything, so in Section 2.1 we define (i) what we mean by an agent,
(ii) the type of problems the agents must solve, and (iii) the coordination problem that
arises in the thus-defined setting.

An earlier study [25] showed that no existing coordination mechanisms are suited for
the type of multi-agent systems we study. In Section 2.2 we therefore present a framework
for modeling (inter-organizational) multi-agent systems. In Section 2.3, we show how we
can express the coordination problem in terms of this framework.

1Several papers that deal with the definition of an agent are [4, 12, 15].
2Recall from Chapter 1 that coordination is the process of placing restrictions on the autonomy of

individual agents, to ensure that every agent can pursue his intended goals, in spite of or thanks to the
actions of other agents

7
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2.1 Problem Statement

We assume that as agents can belong to different organizations, they are self-interested.3

Agents have their own private goals to achieve, and we assume that they make plans to
accomplish these goals. If agents belong to different organizations, they probably have
competitive relations of some sort. Consequently, agents do not wish to share details of
their plans with other agents.

We further assume that the agents’ private goals contribute to a joint task (or global
goal), which is a set of interdependent tasks. Specifically, an agent’s private goal is to
perform the subset of tasks assigned to it. Because of the dependencies between the tasks,
the agents become dependent on each other for the completion of their private goals.

The above interpretation of an inter-organizational multi-agent system has two conse-
quences for the nature of the coordination process. First, it restricts the type of dependen-
cies that are likely to exist between the agents; second, it places additional constraints on
the mechanisms used to coordinate the agents.

With regard to the dependencies that can arise between agents, if agents represent
different organizations, then resource conflicts are less likely to occur. For instance, if
agents operate apart (or are not physical entities at all), then they need not fear occupying
the same location; also, all resources required to accomplish its goals (e.g tools, money)
are likely owned by the organization it works for. Consequently, an agent does not need
to share resources with agents from other organizations. Instead, one agent depends on
another agent in case the latter must perform some tasks before the former can start on
some of his.

With regard to the coordination mechanisms that are applicable, if agents cannot
achieve coordination by exchanging details of plans, then planning and coordination must
be separated. It is not hard to see that the only way to coordinate the agents is to restrict
their (planning) autonomy before they commit to a certain plan. Thus, we are faced with
the following coordination problem:

how to ensure that, whatever plans the individual agents come up with, these
plans can always be combined into a feasible joint plan?

A coordination method to solve this problem must (i) allow separation of the planning
and the coordination process, and (ii) must coordinate the dependencies arising from
the joint task. In [25], we have shown that no method in the multi-agent coordination
literature meets both these requirements. It turns out that if planning and coordination
are separated, then the goals of the agents are unrelated (cf. [22]); if a method coordinates
the dependencies arising from a joint task, then the coordination process is intertwined
with the planning process (cf. [8, 6]). Thus, a new framework for inter-organizational
multi-agent coordination is required.

3That is, they care only about the utility of their own organization, not about the utility of agents
belonging to other organizations.



2.2. A TASK FRAMEWORK 9

2.2 A Task Framework

An elementary task or simply a task is a unit of work that can be performed by single
agent working alone. In our discussion of coordination, we do not distinguish any lower
levels of abstraction than a task. This means that we do not decompose tasks into subtasks
(cf. [5]), for instance. Note that this does not imply that elementary tasks are necessarily
low-level concepts; a task may correspond to a single action, but it may also correspond
to e.g. a sequence of actions. Typically, we view a task as an assignment that an agent
has to perform. In the examples we will give, we will for instance associate a task with the
assignment of delivering a package from one location to another by some transportation
agent such as a truck.

A task can depend on other tasks if there exists a precedence constraint between two
tasks. If a task t1 is preceded by task t2, denoted by t1 ≺ t2, then execution of t1 may not
start until t2 has finished.

Definition 2.2.1 (Composite Task). A composite task T = (T,≺) is a partial order
where T is a non-empty set of tasks, and ≺ is a set of precedence constraints over T , i.e.,
≺⊆ T × T .

We will use the concept of a composite task to formalize the joint task.
A note on terminology: we often speak of the set of precedence constraints E, by which

we mean the transitive reduction of the precedence relation ≺.4 A composite task can then
be represent as a directed acyclic graph G = (T,E). We will mostly use the set E when
referring to the set of precedence constraints, while we will use ≺ if we want to refer to the
transitive precedence relation.

The final component of the framework is the set of agents A = {A1, . . . , An}. Agents in
A are assumed to be autonomous planning5 agents. We will not associate any properties
with an agent, such as its capabilities6. The relevance of distinguishing agents lies in the
fact that (i) the elementary tasks are allocated to agents and that (ii) the autonomy of
the agents introduces the need to coordinate.

2.2.1 Task allocation and agent goals

Given a composite task T = (T,E) and a set of agents A, the tasks in T must be distributed
among the agents. How tasks can or should be allocated to agents depends on the specific
planning domain. We shall see in our treatment of the logistics domain (Chapter 5), that
for certain planning problems, there is only one allocation of tasks to agents possible. For
other domains, many task allocations are possible. In our research, we do not investigate
how to best allocate tasks to agents. Instead, we assume that task allocation occurs a
priori. The allocation of tasks to agents can be specified by a function:

f : T → A

4The transitive reduction of a directed graph G is the directed graph G′ with the smallest number of
edges such that for every path between vertices in G, G′ has a path between those vertices.

5Agents that do not make plans are purely reactive.
6In [27], the capabilities of the agents are part of the framework.
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The function f associates with each task exactly one agent to accomplish it. Consequently,
the set of tasks T is partitioned into T = {T1, . . . , Tn}, with Ti the set of tasks allocated
to agent Ai.

During task allocation, agent Ai not only receives a set of tasks Ti, but also inherits
the precedence constraints that apply to Ti. In this respect, task allocation can be thought
of as giving each agent a goal.

Definition 2.2.2 (Local Goal). Given a composite task T = (T,≺) and a task allocation
function f , the local goal Gi = (Ti ≺i) of agent Ai is given by:

Ti = {t ∈ T |f(t) = i}
≺i = ≺ ∩ (Ti × Ti)

Thus, an agent’s local goal consists of a set of tasks Ti that need to be accomplished
and an ordering relation ≺i that must be adhered to during execution.

2.2.2 Plans, goals, and refinements

Conceptually, plans and goals are the same. This is not only true in our framework, but it
also holds in general. A goal specifies agent activity at a certain level of detail. A plan also
specifies agent behaviour, but at a higher level of detail. A plan, in turn, can be viewed as
the goal for a plan of even finer detail.

As an example, suppose that Bob intends to buy Alice a Valentine’s Day gift. To
achieve this goal, he decides to buy perfume at the local perfumery. This plan specifies his
intent of buying Alice a gift at a greater level of detail. However, it does not specify yet
where Bob will park his car, or whether he will talk to salesperson Charles or salesperson
Trudy.

Perhaps there is a conceptual difference between goals and plans in case we can identify
the highest level of detail. In the AI planning community, it is commonplace to identify a
set of elementary or atomic actions or operators. Obviously, the existence of elementary
actions is a simplifying assumption that enables modeling of the problem at hand. In our
framework, it is neither necessary nor useful to make this assumption.

If plans and goals are equal in our framework, then the question is why we introduced
the notion of a plan in the first place. Recall that we assume our agents to be planning
agents, i.e., we assume agents to plan their actions. If there is a planning activity, then it
is only natural to talk about plans. To illustrate the planning activity, we return to the
example of Bob’s Valentine’s Day gift.

Suppose that apart from the perfume for Alice, Bob also needs to go to the library to
pick up a book on cryptography. We can model Bob’s intentions with two tasks:

t1 : library book on cryptography
t2 : scent for a woman

These two tasks are unrelated; Bob does not, for instance, need the book on cryptography
to decide which perfume to buy for Alice. Thus, Bob has the goal G = ({t1, t2}, ∅). To
accomplish these tasks, Bob plans his actions. The library closes early, so he will pick
up the book first and then get the perfume for Alice. This plan can be represented as
G′ = ({t1, t2}, {t1 ≺ t2}).
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During the planning activity, Bob has created a more detailed goal. In the above
example we have thus distinguished two goals G and G′. The relation between these two
goals is that G′ refines G:

Definition 2.2.3 (Refinement). Let G = (T,≺) and G′ = (T ′,≺′) be two goals. G′

refines G, denoted G′ ` G, iff:

T ′ = T (2.1)
≺′ ⊇ ≺ (2.2)

We will refer to G′ as the refined goal or simply as the plan, in case the refinement of the
original goal is the result of planning activity. Note that in our framework, the planning
activity only specifies a refined ordering relation ≺′. The actual planning software an agent
uses to plan his activities will produce a plan with all kinds of details such as resource usage
that are not relevant in our current discussion. Such an overly-detailed plan can be viewed
as a concrete plan; the plan represented as a composite task (goal) is the abstract plan. The
relation between the concrete plan and the abstract plan need not be trivial. Nevertheless,
we will assume that given a concrete plan, we can always extract the abstract plan. That
is, whatever information is stored in the concrete plan, we can always deduce (i) the set of
tasks accomplished by the plan, and (ii) the ordering relation of the tasks in the plan.

We require that agents only make acyclic plans. With regard to goal refinement, this
means that if G′ refines G, then the relation ≺′ may add extra precedences to ≺, but not
any precedences that make ≺′ cyclic. If a cyclic ordering relation ≺′ were created, then we
would call the pair (T ′,≺′) an infeasible plan.

2.2.3 The joint plan

The plan each agent makes for his local goal should contribute to the global goal, which is
executing the composite task T . All local plans must therefore be combined into a joint
plan. With regard to a joint plan, we can again make the distinction between the concrete
plan and the abstract plan. A concrete joint plan will include e.g. timing information:
if one agent Ai wants to start on a task t that is preceded by a task t′ from a different
agent Aj , then Ai needs to know the time at which time t′ will be finished. The abstract
plan only contains information about the order in which tasks are executed. Again, we
only consider the abstract joint plan. In that case, we can simply form the joint plan by
uniting the plans of the individual agents, along with the set of precedence constraints not
contained within any agent’s goal:

Definition 2.2.4 (Joint Plan). Given a composite task T = (T,≺) and a partitioning T
of T , resulting in a set of agent goals Gi = (Ti ≺i), i = 1, . . . , n, and set of goal refinements
pi = (Tpi ,≺pi), the joint plan J = (TJ , EJ) is given by

EJ = [≺ ∪ ≺p1 ∪ · · · ∪ ≺pn ]−

TJ = T

In case the relation EJ is cyclic, we say that the joint plan is infeasible.7

7Note that R− is the transitive reduction of relation R.
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L1

L2

L3

L4

agent A1 agent A2

D

p1

p2

Figure 2.1: Parcels must be delivered between locations; a package can be transferred from one
truck to another at the depot.

Definition 2.2.4, and with it our discussion of multi-agent coordination, ignores timing
issues. In Chapter 5, we discuss why and under which conditions timing is not an issue.8

2.3 The Coordination Problem

The coordination problem we study is how to keep agents autonomous in their planning
activity, while still having the guarantee of a feasible joint plan. That is, we want to ensure
that whatever local plans the agents come up with, these plans can be combined unchanged
into a joint plan.

The following example shows how an infeasible (cyclic) joint plan may be created, in
case no coordination is performed.

Example 2.3.1. We have a multi-agent planning problem where parcels have to be trans-
ported between locations: a package p1 must be transported from location L1 to L4 and a
package p2 that must be transported from L3 to L2 (see Figure 2.1). We have two trans-
portation agents: agent A1 handles locations L1, L2 and the depot D, while agent A2 serves
locations L3, L4 and D. Both agents have to start and finish at the depot D. Transporta-
tion of package p1 requires agent A1 to pick up the package at L1, but as location L4 is
out of A1’s region, he will only transport p1 as far as the depot D. From there, agent A2

will drive the package to L4. Similarly, agent A2 will bring p2 to the depot, but A1 must
perform the final trip to L2.

Now agent A1 has to make a plan for carrying out the tasks t1 = (L1, D) and t2 =
(D,L2), while A2 has to make a plan for t3 = (L3, D) and t4 = (D,L4). These tasks
are interrelated: t1 has to be completed before t4 can start and likewise t3 has to precede
t2. If we would allow both agents to plan independently, then the two plans could easily
become incompatible: for example, if agent A1 would aim for the plan (visiting sequence)
D−L2−L1−D to achieve his tasks t2 and t1 and A2 would aim for the visiting sequence
D−L4−L3−D, these plans cannot be combined in a multi-agent plan achieving T : Clearly,

8Basically, timing is of no importance for coordination if agents are concerned only about the amount
of work they must do, not the times at which they must do it.
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to start its plan, agent A1 has to wait in D until t3 has been accomplished by agent A2, but
agent A2 cannot complete this task, because it intends to wait until t1 has been completed
by A1. Hence, trying to execute the agent plans would result in a deadlock.

In Example 2.3.1, no additional constraints were placed on the agents before they
started making their plans. As a result, each agent makes a plan that from his local point
of view is correct, but it results in an infeasible joint plan, since EJ contains the cycle:
(t1, t4, t3, t2, t1).

A1 A2

t1

t3

t4

t2

Figure 2.2: For both agents, executing the post-depot task before the pre-depot task is a feasible
refinement with regard to their local goals.

In Figure 2.2, the situation before planning is depicted. A solid arrow represents a
precedence constraint that is part of the precedence relation ≺ and must therefore be
adhered to by any correct (joint) plan. Dashed arrows represent possible goal refinements.
For instance, for agent A1, a feasible refinement would be to add precedence constraint
t2 ≺ t1 (i.e., to execute his post-depot task before his pre-depot task) to his local goal, which
has no precedence constraints yet. From a global point of view, however, not both agents
should be allowed to add their ‘dashed’ precedence, otherwise the joint plan will become
cyclic. To decide which agents should be free to add which constraints, coordination is
required.

A simpler problem is to verify whether any coordination is needed, that is, the coor-
dination verification problem is to decide whether it is impossible for the agents to make
refinements resulting in an infeasible joint plan:

Definition 2.3.2 (Coordination Verification Problem). The coordination verification
problem (CVP) is: given a coordination instance (T, G) with G = (T,E) a dag and T =
{T1, . . . , Tn} a partition of T , does it hold that, for all sets of refinements R ⊆ T × T
satisfying:

1. R = R1 ∪ · · · ∪Rn where Ri ⊆ Ti × Ti for i = 1, . . . , n, and

2. for each i, the graph (Ti, Ei ∪Ri) is acyclic,

the graph (T,E ∪R) is acyclic?

Note that in a yes-instance of CVP, it holds that whatever locally acyclic plans the
agents come up with, the result can be combined in a feasible joint plan.
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In the above depot example, we obviously have a no-instance of the coordination verifi-
cation problem: if we allow both agents to plan independently, then an infeasible joint plan
might result. It is not hard to see how the agents can be coordinated: either agent A1 must
perform its pre-depot task t1 before its post-depot task t2, or agent A2 must perform its
pre-depot task before starting on its post-depot task. In general, the coordination problem
is to find a set of additional constraints such that, whatever refinements the individual
agents make, the joint plan will always be feasible. The coordination problem is a mini-
mization problem: in order to ensure coordination, we wish to add as little constraints as
possible, because additional constraints reduce the planning autonomy of an agent. Also,
if an agent is severely constrained in the planning process, then it might not be possible
to find a low-cost plan.9

Definition 2.3.3 (Coordination Problem). The coordination problem (CP) is: given
a coordination instance (T, G) find a set of precedence constraints ∆ = ∆1 ∪ · · · ∪∆n with
∆i ⊆ Ti × Ti such that:

1. E ∪∆ is acyclic,

2. (T,E ∪∆) is a yes-instance of CVP, and

3. |∆| is minimal,

A note on terminology: we will call a set of constraints ∆ a coordination set if it meets
requirements 1 and 2 of Definition 2.3.3. If a set ∆ meets requirements 1, 2 and 3, then ∆ is
an optimal coordination set. We say that a coordination instance I = (T, G) is coordinated,
if the empty set ∅ is a coordination set, i.e., in case I is a yes-instance for CVP.

Definition 2.3.3 reflects our choice to coordinate agents in the pre-planning phase: the
coordination problem asks to find a set of constraints, so that agents can subsequently
refine their goals plan independently of each other.

9We will discuss plan cost, and the relation between plan cost and additional precedence constraints, in
Chapter 5.



Chapter 3

Analyzing the Coordination
Problem

Personally, I never take a peek at the last page of a book. If I must know the number of
pages, I am ever careful not to inadvertently read the author’s final few lines. Some people,
however, yield almost instantly to this low form of cheating. If such people were to read
this thesis, then chances are that they would skip this chapter and proceed directly to the
approximation algorithms in Chapter 4. Indeed, with the definition of the coordination
problem in the previous chapter and its solutions in the next, what remains to be said in
this chapter?

If you are still reading, you will find in this chapter an analysis of the coordination
problem that bridges the gap between the problem definition and the solution methods
by presenting the theory (i.e., definitions, propositions, etc.) on which the approximation
algorithms rely. Specifically, we will associate a graph structure, which we name the coor-
dination graph, with a coordination instance, and then show that the coordination problem
can be reduced to a kind of cycle breaking in the coordination graph.

In Section 3.3, we briefly investigate the composition of a coordination set ∆. In the
previous chapter, we have defined a solution for a coordination instance to consists of a set
of additional intra-agent constraints. We discuss which types of arcs qualify for placement
in a coordination set.

At the end of this chapter, in Section 3.4, we analyze the complexity of the coordination
problem. For the benefit of the reader who feels complexity analysis is about as exciting
as watching paint dry, we here summarize the results: the coordination problem is not in
P1, that is, there do not exist algorithms that always return the optimal solution, while
requiring an amount of time polynomial in the size of the coordination instance. A problem
in NP requires that a solution can be verified in polynomial time. However, the problem
of verifying whether a coordination set indeed coordinates an instance is co-NP-complete.
The coordination problem itself is Σp

2-complete. Finally, the coordination problem is also
hard to approximate. Even for near-trivial restricted classes of the coordination problem,
it is highly unlikely that there exist constant-ratio approximation algorithms.

1unless P = NP, which is very unlikely

15
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3.1 The Coordination Graph

We already have a graph notation for a complex task — we can think of the pair (T,E)
as a directed acyclic graph — so why do we further attempt to confuse the reader with
yet another graph representation? Primarily, because we also want to be able to represent
the set of possible refinements in a graph, since these refinements — representing agent
planning autonomy — are at the heart of the coordination problem.

A second reason is that a coordination instance can contain information that is not rel-
evant from the point of view of coordination. Clearly, culling irrelevant tasks, precedences
and refinements from the coordination graph does not change the coordination problem,
but it does simplify proof-construction. Once we have proven a certain case irrelevant for
coordination, we do not have to take this case into account in the proofs of all subsequents
propositions.

3.1.1 Tasks and the coordination problem

Suppose an agent is allocated a single task t. Also, suppose there are no tasks preceding
or succeeding t. Clearly, the time at which t is executed is irrelevant with regard to
coordination. To study the coordination problem, we can concentrate on the set of tasks
that might be important for coordination.

In the planning activity, agents refine their goals. Thus, for any plan pi = (Ti,≺pi), the
relation ≺pi is acyclic. Recall that the coordination problem is to ensure that for any set of
plans, the relation EJ = [≺ ∪ ≺p1 ∪ · · · ∪ ≺pn ]− will be acyclic. Since both the agent plans
and the relation ≺ are acyclic, a cycle in EJ must involve the plan of more than one agent.
Hence, we are interested in (potential) inter-agent cycles in the relation EJ . Consequently,
a cycle in EJ involves tasks that are related to ‘other-agent’ tasks; a task t is related to a
task t′ if there is a precedence constraint between t and t′. We define the set INTER of
inter-agent precedences constraints:

Definition 3.1.1. The set of inter-agent precedence constraints is given by

INTER = E \
n⋃

i=1

(Ti × Ti)

We say that a task t is related to a task from another agent if t is incident on an INTER
arc.

Definition 3.1.2. The set of tasks Tinter ⊆ T is the set of tasks that are directly preceded
or succeeded by a task allocated to another agent:

Tinter = T in ∪ T out

where T in = ran(INTER) and T out = dom(INTER).

To avoid confusion, note that T in is the set of tasks that have an incoming INTER arc,
and T out is the set of tasks that have an outgoing INTER arc.

Note that we have defined the set INTER as E \
⋃n

i=1(Ti × Ti). By using E instead of
≺ in Definition 3.1.1, we avoid including a lot of irrelevant tasks in that Tinter. Consider
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t2 t1

Figure 3.1: Only tasks t1 and t2 are in Tinter.

Figure 3.1, where t1 and t2 are in Tinter. If we had defined INTER as ≺ \
⋃n

i=1(Ti × Ti),
then all tasks in the figure would be in Tinter, because for all t′ ∈ T : t1 ≺ t′.

Proposition 3.1.3 shows why it is sufficient to restrict our attention to tasks in Tinter.

Proposition 3.1.3. Given a coordination instance I = (T, G) and a set of plans {p1, . . . , pn},
if there is an inter-agent cycle C in ≺ ∪ ≺p1 ∪ · · · ∪ ≺pn, then there is an inter-agent cycle
C ′ in ≺ ∪ ≺p1 ∪ · · · ∪ ≺pn such that C ′ ⊆ Tinter.

Proof. The inter-agent cycle C = (e1, . . . , em) consists of two types of arcs: arcs in INTER
and arcs in ≺pi . INTER arcs use only tasks in Tinter, arcs in ≺pi may use any type of
tasks. We can construct C ′ by replacing the latter type of arcs with arcs that use only
Tinter tasks.

Let eh and ek be two INTER arcs in C, such that for all j, h ≤ j ≤ k, ej ∈≺pi for one
agent Ai. Let t = ran(eh) and t′ = dom(ek). Note that (t, t′) ∈≺pi , because there is a path
in ≺pi from t to t′, and ≺pi is transitively closed. Also, {(t, t′)} ⊂ Tinter × Tinter. Thus, to
construct C ′, we can replace all arcs ej between eh and ek with the single arc (t, t′).

3.1.2 Precedences and the coordination problem

If a task is not interesting for coordination— it is not in Tinter — then any precedence
constraints involving that task are not of interest either. Thus, we focus on the set of
precedence constraints that is a subset of Tinter × Tinter.

We can divide the set of interesting precedences into precedences between agents (i.e,
between tasks allocated to different agents) and precedences within agents. We have already
defined the set of inter-agent precedences INTER. We will now define the set of intra-agent
precedences INTRA.

Definition 3.1.4. The set INTRA represents the precedence relation within agents of tasks
in Tinter:

INTRA =≺ ∩
n⋃

i=1

(Tinteri × Tinteri)

where Tinteri = Tinter ∩ Ti.

The set INTRA captures the precedence relation within agents. This information is
useful if we want to know how an agent can contribute to an inter-agent cycle. For instance,
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suppose an agent has two INTER tasks t1 and t2, with t1 ∈ T in and t2 ∈ T out (see
Figure 3.2). If t1 ≺ t2, then this agent can possibly contribute to an inter-agent cycle
(Figure 3.2a). If, however, t2 ≺ t1, then no cycle can pass through the agent (Figure 3.2b).

a b

t1

t2

t1

t2

Figure 3.2: (a): There may be an inter-agent cycle if t1 ≺ t2. (b): If t2 ≺ t1, then no cycle can
pass through the agent.

3.1.3 Refinements and the coordination problem

The agents’ freedom to refine their goals is at the heart of the coordination problem.
Without coordination, agents might make locally valid plans that result in an infeasible
joint plan. However, not all goal refinements are relevant for coordination. For instance,
if an agent is allocated (only) two tasks, both of which are not in Tinter, then any goal
refinement will be compatible with the plans of other agents.

We can specify the set of coordination relevant refinements2 more accurately than
considering a subset of Tinter×Tinter, though. In fact, if (not iff) a refinement δ is relevant
for coordination, then it must satisfy the following four conditions:

1. δ refines a local goal and is thus contained within an agent: δ ∈
⋃n

i=1(Ti × Ti),

2. δ = (t1, t2) is not in INTRA−1: if INTRA contains t2 ≺ t1, then adding t1 ≺ t2
creates a cycle in ≺i ∪ δ

3. δ = (t1, t2) is not in INTRA: if the constraint t1 ≺ t2 is already in the local goal,
then it is not a refinement.

4. The arc is in T in×T out: all possible inter-agent cycles that intersect an agent Ai will
‘enter’ Ai at some t ∈ T in and ‘exit’ Ai at some t′ ∈ T out.

This leads us to the definition of the set of refinement arcs REF .

Definition 3.1.5. The set of coordination-relevant refinement arcs REF is given by:

REF =
n⋃

i=1

(T in
i × T out

i ) \
(
INTRA−1 ∪ INTRA

)
where T in

i = T in ∩ Ti and T out
i = T out ∩ Ti.

2We will often call a set of constraints a refinement if the goal, resulting from adding the constraints, is
a refinement.
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In Proposition 3.1.7, we prove that our claim that if a refinement is relevant for coordi-
nation, then it must be in REF . For Proposition 3.1.7, we need to introduce the concept
of a pass.

Definition 3.1.6 (Pass). Given an inter-agent cycle C = (t1, . . . , tn, t1) in
≺ ∪ ≺p1 ∪ · · · ∪ ≺pn, a pass p of length m of C through Ai is a series of tasks
(vj , . . . , vj+m) ⊂ C, such that (i) {vj , . . . , vj+m} ⊆ Ti, and (ii) vj−1 and vj+m+1 are not in
Ti.

Proposition 3.1.7 (Coordination-Relevant Refinements). Given a coordination in-
stance I = (T, G) and a set R = {R1, . . . , Rn} of local-goal refinements, such that ≺ ∪ R
contains an inter-agent cycle C, then there exists a set R′ ⊆ REF such that:

1. R′ is present under the transitive closure of ≺ and R:

R′ ⊆
(
[≺ ∪ R]+− ≺

)
2. ≺ ∪ R′ contains an inter-agent cycle C ′

Proof. Note that by Proposition 3.1.3, we can assume that R involves only tasks in Tinter.
The cycle C consists of, alternately, passes of C through an agent and arcs in INTER.

To construct C ′, we might need to replace some of the passes in C. We distinguish two
cases, for all passes p = (tk, . . . , tm) in C:

case 1: (tk, tm) ∈≺i: We can use p for C ′, and choose R′
i = ∅.

case 2: (tk, tm) 6∈≺i: We can choose R′
i = {(tk, tm)} (regardless of the composition of Ri).

The set R′
i satisfies the requirements of Proposition 3.1.7:

1. (tk, tm) ∈ REF : first, note that tk ∈ T in and tm ∈ T out; second, (tk, tm) 6∈≺i,
by definition of case 2; third, (tk, tm) 6∈≺−1

i because Ri is a refinement: there is
a path from tk to tm in ≺i ∪ Ri, so there can be no path in ≺i from tm to tk.

2. (tk, tm) ∈ [≺i ∪ Ri]+− ≺i. There is no path from tk to tm in ≺i, by definition
of case 2, but there is a path from tk to tm in ≺i ∪Ri.

3.1.4 Definition of the coordination graph

The coordination graph represents the set of tasks, the precedence relation between those
tasks, and the refinements that the agents are allowed to make during planning. We define
the coordination graph as follows:

Definition 3.1.8 (Coordination Graph). Given a coordination instance I = (T, G),
the directed graph GT = (VT , ET ), with

VT = Tinter

ET = INTRA ∪ INTER ∪ REF

is called the coordination graph.

In depicting the coordination graph, we represent arcs in INTRA and INTER as solid
arcs, arcs in REF as dotted or dashed arcs, and we delineate the tasks belonging to one
agent by a convex area.
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3.2 The Coordination Graph and the Coordination Problem

When is a coordination instance coordinated? According to Definition 2.3.3 of the coor-
dination problem, an instance is coordinated if ∆ = ∅ is a coordination set. In that case,
for any set of local-goal refinements, the relation EJ is acyclic, so the joint plan refines the
complex task. To check whether a coordination instance is coordinated, we do not want to
enumerate the exponential number of local-goal-refinement sets, though.

In this section, we will prove that an instance is coordinated if and only if the coor-
dination graph contains a certain type of cycle, which we will call a refinement cycle. In
Section 3.4, however, we will show that detection of a refinement cycle cannot be done in
polynomial time.

3.2.1 Inter-agent cycles

If a certain set of goal refinements R = {R1, . . . , Rn} creates a cycle in EJ = [≺ ∪ R]−,
then this cycle will be visible in the coordination graph. After all, the coordination graph
contains all tasks, precedences and refinements that are relevant for coordination, as shown
in Section 3.1.

r1

r2

Figure 3.3: Despite the presence of an inter-agent cycle, this instance is coordinated.

Thus, we are looking for inter-agent cycles in the coordination graph. However, not
all inter-agent cycles are interesting from the point of view of coordination, as Figure 3.3
shows. In Figure 3.3, there is an inter-agent cycle in the coordination graph, but the
instance is coordinated; the only way that a cycle in EJ can be created is if the middle
agent chooses R = {r1, r2} to refine his goal. However, {r1, r2} is not a refinement, since
it creates a local cycle.

Thus, we are interested in inter-agent cycles that are locally acyclic, that is, the re-
finement arcs contributing to the cycle should not form a cycle with the local precedence
constraints in ≺i.

Definition 3.2.1 (refinement cycle). An inter-agent cycle C is a refinement cycle iff,
for all i = 1, . . . , n, (REF ∩ C) ∪ ≺i is acyclic.

We introduced the term ‘refinement cycle’ to avoid writing ‘locally-acyclic inter-agent
cycle’ every time.
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Theorem 1. Given a coordination instance I = (T, G), the following assertions are equiv-
alent.

1. There exists a refinement cycle in the coordination graph.

2. The coordination instance is not coordinated.

Proof.

(1: refinement cycle → not coordinated) Let C = (e1, . . . , em) be a refinement cycle
in the coordination graph. To prove that the coordination instance is not coordinated,
we need to show that there exists a set of goal refinements R = {Ri, . . . , Rn} that
leads to a cycle in EJ = [≺ ∪ R]−.

We choose R = REF ∩ C. Clearly,

1. ≺i ∪ Ri is acyclic, because C is locally acyclic by Definition 3.2.1,

2. ≺ ∪ R is cyclic, since C is in INTER∪ INTRA∪ R, which is a subset of ≺ ∪ R.

(2: not coordinated → refinement cycle) Assume that agents make refinements to
their goals in such a way that EJ = [≺ ∪ R1 ∪ · · · ∪ Rn]− contains an inter-agent
cycle C = (e1, . . . , em). By Proposition 3.1.7, we may assume w.l.o.g. that R ⊆ REF .

The cycle C maps to an inter-agent cycle C ′ in the coordination graph: If ei ∈ C∩R,
then ei ∈ REF and since REF ⊆ ET , ei is in the coordination graph. If ei = (t, t′) ∈
C ∩ ≺, then there is a path in INTRA ∪ INTER from t to t′.

It is easily understood that C is locally acyclic. Since Ri refines (Ti,≺i), ≺i ∪ Ri is
acyclic, for all i = 1, . . . , n.

3.3 Constructing a Coordination Set

A coordination set is a set of additional intra-agent constraints ∆. Since E ∪∆ must be
acyclic, the set ∆ refines T , by Definition 2.2.3. But which refinements should we make in
order to ensure coordination? Note that because of Theorem 1, the coordination problem
can be rephrased in terms of the coordination graph: to coordinate the agents, we must
ensure that the coordination graph contains no refinement cycles.

The precedence relation ≺ is acyclic; consequently, any cycle in the coordination graph
must include refinement arcs. More specifically, every cycle in the coordination graph must
contain at least two arcs from REF .

Proposition 3.3.1. For any cycle C in GT it holds that |C ∩ REF | ≥ 2.

Proof. Let C = (v1, v2, . . . , vn, v1) be a cycle in GT . Since INTRA ∪ INTER is acyclic, C
contains at least one refinement arc in C. Without loss of generality, assume (v1, v2) ∈ REF .
Suppose for the sake of contradiction that the remaining arcs in C are not in REF , i.e.,
(C \ {(v1, v2)}) ⊆ (INTRA ∪ INTER). But then the path (v2, . . . , vn, v1) is in INTER ∪
INTRA, and therefore, since INTRA is transitively closed, (v2, v1) ∈ INTRA.
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Due to the fact that INTRA−1∩REF = ∅, by Definition 3.1.5, we have (v1, v2) 6∈ REF ,
which is a contradiction. Hence, not all remaining arcs can be in INTER ∪ INTRA,
which means that there must be at least one more arc that is in REF . It follows that
|C ∩ REF | ≥ 2.

To remove all refinement cycles from the coordination graph, we need to remove arcs
from the coordination graph. Since we assume that the allocation of tasks and the relation
≺ cannot be altered during coordination, we cannot remove arcs from INTRA or INTER.
Hence, we are only allowed to remove arcs from the set REF . Note that arcs from REF
can be removed by adding arcs to the set INTRA (Definition 3.1.5). Hence, we can remove
an arc r ∈ REF by adding either r or r−1 to INTRA.

Refinement arcs can be viewed as cycle-enabling arcs. If we add an arc r ∈ REF ,
this cycle-enabling arc will still be in the coordination graph. An arc in REF−1 can be
viewed as a cycle-breaking arc. If r ∈ REF , then adding r−1 to INTRA ensures that the
cycle-enabling r is no longer in the coordination graph.

Coordination entails constraining agent freedom; in case of our coordination problem,
this means that not all agents may be allowed to add all possible refinements. Thus,
coordination must specify which refinements are not allowed. To disallow a refinement
r = (t1, t2), we can add r−1 = (t2, t1) to INTRA. Hence, a coordination set is specified by
a set of refinements ∆ ⊆ REF−1.

Proposition 3.3.2. Given a coordination instance I = (T, G) and an arbitrary coordina-
tion set ∆ for I. Then the set

∆′ = [E ∪∆]+ ∩ REF−1

that is, the set of constraints in REF−1 that are added as a consequence of ∆ (possibly
under transitive closure), is also a coordination set.

Proof. Let GT be the coordination graph associated with T = (T,E) and let GT ′ be the
coordination graph associated with T ′ = (T,E ∪∆).

For every refinement cycle C in GT , let REF T (C) = REF T ∩ C. In GT ′ , C no longer
exists, because not all arcs in REF T (C) are in REF T ′ (or in INTRAT ′). For every C
in GT , there must be at least one r ∈ REF T (C) that has been removed because of the
fact that r−1 ∈ [E ∪ ∆]+. Otherwise, if all r ∈ REF T (C) had been removed because
r ∈ [E ∪∆]+, then the cycle C would still be present in E ∪∆, which contradicts the fact
that ∆ is a coordination set.

We can form ∆′ by putting, for all C, the arcs r−1 ∈ [E∪∆]+, such that r ∈ REF T (C),
into ∆′. Note that ∆′ coordinates I:

• all refinement cycles in GT are broken by addition of ∆′, since every refinement cycle
in GT has at least one arc in ∆′−1.

• E ∪∆′ is acyclic, because E ∪∆′ ⊆ [E ∪∆]+, and E ∪∆ is acyclic.

Also, it is clear that ∆′ ⊆ REF−1
T .

It follows from Proposition 3.3.2 that, although a coordination set is specified by a
subset of REF−1, we do not have to coordinate by directly adding arcs from REF−1 to
INTRA.
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A1

A2 A2

A3 A3

r1

r3

r2

A1

Figure 3.4: (a): A refinement cycle in GT . (b): If r2 and r3 are added to E, then r−1
1 ∈ INTRA.

To coordinate their activities, some agents must forego the right to make a refinement
so that other agents are free to make the refinements they want. This understanding can
be reached in two ways. First, an agent can explicitly relinquish the right to choose a
certain refinement r ∈ REF by adding r−1 to his set of local precedences ≺i. This can be
interpreted as the cooperative mode of coordination: one agents gives way, so that other
agents can act freely.

A second way to coordinate is that an agent claims the right to refine his goal in a
certain way: given a refinement r ∈ REF , he adds r to ≺i. Subsequently, the set of
allowed refinements for the other agents might be reduced, because some arcs that were
in the set REF (defined in terms of the original precedence relation ≺), may no longer be
in the set of refinement arcs associated with E ∪ {r}. This form of coordination can be
interpreted as selfish.

In Figure 3.4, the selfish form of coordination is illustrated. In Figure 3.4a, we see that
there is a refinement cycle in the coordination graph. In Figure 3.4b, agents A2 and A3

have refined their goals by r2 and r3, respectively. For agent A1, this means that refinement
r1 is no longer allowed. Indeed, from the definition of INTRA, it is easy to see that r−1

1

has been added to ≺A1 as a result of the additions of r2 and r3 to E. Also, note that even
though agents A2 and A3 initially added ∆ = {r2, r3}, the coordination set is specified by
∆′ = {r−1

1 }.

3.4 Complexity of the Coordination Problem

Due to Theorem 1, we can view the coordination problem as the problem of removing all
refinement cycles from the coordination graph. A similar problem is the Feedback Arc
Set problem (FAS), which is to find set of arcs F such that every cycle in the graph has
at least one arc in F ; removing a feedback arc set from the graph results in all cycles
being broken. The feedback arc set problem is an optimization problem in NP(O). The
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coordination problem turns out to be harder than that, though.
For problems in NP3, a solution must be verifiable in polynomial time. For instance,

for the feedback arc set problem, we can verify in polynomial time that for a given feedback
arc set F , every cycle indeed intersects F . For the coordination problem, however, it is not
possible to verify in polynomial time that a coordinated instance contains no refinement
cycle. That is, the coordination verification problem is co-NP-complete, as we will see
in Section 3.4.1. In Section 3.4.2, we will prove that the coordination problem itself is
Σp

2-complete, which means that it is solvable in non-deterministic polynomial time, if we
have an NP-oracle for the coordination verification problem.

Given the complexity of the coordination problem, we have tried to identify in Sec-
tion 3.4.3 subcases of the coordination problem that are easier to solve. We have not found
any subcases in P, but we have been able to identify structural characteristics without
which a coordination instance is in NP.

Finally, in Section 3.4.4, we analyze the approximability of the coordination problem.
We shall see that even for severely restricted coordination instances, it is unlikely that
there exist constant-ratio approximations.

3.4.1 Complexity of coordination verification

The coordination-verification problem is to verify whether there cannot exist a set of re-
finement arcs that create a refinement cycle. It is easy to see that CVP is in co-NP:
a certificate for a no-instance of CVP is a set of refinements satisfying all properties of
Definition 2.3.2. In other words, a no-certificate consists of a set of refinement arcs that
constitutes a refinement cycle.

To prove that this problem is co-NP-complete, we will present a reduction from the
Path With Forbidden Pairs problem (PWFP).

Definition 3.4.1. The path with forbidden pairs problem is: given a tuple (G0, C, s, t)
where G0 = (V,E0) is a directed acyclic graph, C = {c1, c2, . . . , cn} is a set of pairs of arcs
in E0, and s and t are two distinct nodes in V , does there exist a path from s to t using at
most one arc from every cj ∈ C.

Specifically, we will reduce PWFP to the complement of the coordination-verification
problem. The complement of CVP, which we will call the Coordination-Failure Detection
problem (CFD) asks whether the coordination graph contains a refinement cycle.

To reduce PWFP to CFD, we need to transform the graph G0 = (V,E0) (the PWFP
instance) to a tuple (T, G = (T,E) ). Intuitively, this transformation consists of two parts:
an interesting part and a not-so-interesting part. The not-so-interesting part entails (i)
creating a single-task agent for every vertex in V , and (ii) replicating those arcs that are
not involved in any forbidden pair to the set of precedence constraints E.

The interesting part regards the transformation of forbidden pairs. We encode each
forbidden pair as a so-called path-blocking gadget, depicted in Figure 3.5. For a certain
forbidden pair cj = {(x, y), (u, v)} in the PWFP problem, we may choose either, but not
both, of these arcs for creating a path from s to t. Similarly, in creating an inter-agent
cycle in CFD, we may add either refinement arc (xj , yj), or (uj , vj), but not both. This

3Although the coordination problem is an optimization problem, we will discuss the complexity of the
coordination problem in terms of its decision variant.
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x y

v u
uj

yj

vj

xj
agent

Figure 3.5: The subgraph constructed for a forbidden pair {(x, y), (u, v)} ∈ C.

mutual exclusion is enforced by the arcs in (vj , xj) and (yj , uj): addition of e.g. refinement
arc (xj , yj) creates a path vj − xj − yj − uj in ≺i. Subsequently, (uj , vj) may no longer be
added, as it would create a local cycle.

To complete the transformation, we need to connect t to s. In this way, we can equate
the existence of an s − t path in PWFP to the existence of a refinement cycle in CFD.
However, we do not directly connect t to s, to avoid instances with a trivial s − t path
(using no arcs from forbidden pairs) to result in a cyclic coordination instance. Instead,
we place an agent between s and t, that can connect t to s by adding a single refinement
arc. An example of a transformation from PWFP to CFD is given in Figure 3.6.

Formally, the reduction of PWFP to CFD is defined as follows:

1. For i = 1, . . . n: Ti = {vi}; for j = 1, . . . , k (with k = |C|):
Tn+j = {xj , yj , uj , vj | {(x, y), (u, v)} ∈ C} and Tn+k+1 = {s0, t0}, where both s0 and
t0 do not occur in V . Obviously, T =

⋃n+k+1
i=1 Ti.

2. E is the smallest set of arcs satisfying the following conditions:

(a) For every arc e = {u, v} ∈ E0 not occurring in a pair of arcs in C, e occurs in
E.

(b) For every constraint-pair of arcs cj = {(x, y), (u, v)} ∈ C, E contains the follow-
ing arcs

(x, xj), (yj , y), (u, uj), (vj , v), (yj , uj), (vj , xj)

(See Figure 3.5 for an illustration).

(c) Finally, E contains the arcs (t, t0) and (s0, s).

Proposition 3.4.2. The coordination verification problem is co-NP-complete.

The proof of Proposition 3.4.2 consists of proving that PWFP reduces to CFD. In
particular, we need to prove:

1. The transformation results in a correct instance of the CFD problem; this means that
(T,E) must be a dag.

2. A yes-instance of the PWFP problem maps to a yes-instance of the CFD problem.

3. A yes-instance of the CFD problem maps to a yes-instance of the PWFP problem.
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(b)(a)

C = {{(s, b), (a, t)}}
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Figure 3.6: (a): A PWFP instance with a single forbidden pair and (b): the corresponding coor-
dination instance.

Proof. The graph G = ({Ti}i=n+k+1
i=1 , E) is acyclic: the subgraph of G restricted to nodes in

V is clearly acyclic. The additional nodes {xj , uj}k
j=1 and the node t0 are clearly endpoints

of paths; the additional nodes {yj , vj}k
j=1 and the node s0 are clearly starting points of

paths. Hence, the additional nodes cannot contribute to a cycle in E.

A yes-certificate for a PWFP instance is given by a set of arcs E′ = {e1, . . . , em} such
that each ej corresponds to one arc from the constraint-pair cj ∈ C. Clearly, E′ contains
at most one arc from every pair in C. We map the set E′ to a yes-certificate R for CFD
in the following manner: if (x, y) from cj in E′, then (xj , yj) ∈ R. We complete the set
R by adding arc (t0, s0). Clearly, R creates an inter-agent cycle in G: R creates a path
from s to t, and a path from t to s, so we have an inter-agent cycle C ′. C ′ is a refinement
cycle, since each agent contributes at most one refinement arc to C ′, and it requires two
refinement arcs to create a local cycle, according to Proposition 3.3.1.

A yes-certificate R creates an inter-agent cycle in CFD. It is easily verified that any
inter-agent cycle must include the arc (t0, s0) from agent An+k+1. Thus, R′ = R\{(t0, s0)}
creates a path from s to t in the CFD-graph. The set R′ can only map to a yes-certificate for
PWFP. First, note that only path-blocking-gadget agents are capable of adding refinement
arcs (apart from agent An+k+1, of course). Second, each such an agent can add at most
one refinement arc: either (xj , yj), or (uj , vj) (these are the only refinement arcs for one
agent). Adding both would result in a cyclic local plan, which is not allowed. Thus, R′

maps to a yes-certificate for the PWFP instance, since an s− t path can be created using
at most one arc from every forbidden path.

3.4.2 Complexity of the coordination problem

A solution ∆ of a CP instance (T, G) is a cardinal-minimal set ∆ of additional arcs that
is sufficient to guarantee feasibility of the joint plan given arbitrary, individually feasible
plans. Given a coordination instance I and an integer K ≥ 0, the decision variant of the
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coordination problem asks for the existence of a solution ∆ of size at most K.4 In this
section, we will show that for arbitrary values of K > 0, we are faced with a Σp

2-complete
problem. To prove this, we need to introduce the following quantified version of the PWFP
problem.

Definition 3.4.3 (∃∀¬PWFP). Given a PWFP instance (G0 = (V,E0), C, s, t), and a
partitioning {C1, C2} of C, the ∃∀¬PWFP problem is to find an exclusive choice from C1,
i.e., a set X1 that contains exactly one arc from every pair of forbidden pairs in C1, such
that for every exclusive choice X2 from C2, there does not exist a path from s to t in the
set of arcs E′

0 = (E0 \ C) ∪X1 ∪X2.5

We use the complement of the PWFP problem, in order to be able to relate a coordi-
nation set — ensuring that no refinement cycles can exist — to a solution for ∃∀¬PWFP
that ensures that no s− t path can be formed.

Showing that ∃∀¬PWFP is Σp
2-complete is straightforward using a reduction from the

quantified satisfiability problem QSAT2 that slightly adapts a standard reduction from
3-SAT to PWFP (cf. [24]).

Proposition 3.4.4. The coordination problem is in Σp
2.

Proof. To see that the coordination problem is in Σp
2, take a coordination instance (T, G)

and a K > 0. Nondeterministically, guess a set of arcs ∆ = ∆1 ∪ · · · ∪ ∆n and verify
whether: (i) |∆| ≤ K, (ii) each (Ti,≺i ∪ ∆i) is acyclic, and (iii) (T, (T,E ∪∆)) is a yes-
instance of the CVP problem. The first two verifications can be done in polynomial time,
while the last verification requires the consultation of an NP-oracle. Hence, the problem is
in Σp

2.

To prove that coordination is also Σp
2-hard, we will reduce ∃∀¬PWFP to the coordina-

tion problem. Intuitively, the reduction consists of three parts, two of which are interesting
and one that is not. The non-interesting part is the same as the trivial part for the pre-
vious reduction, i.e., it consists of replicating vertices and non-interesting arcs. The first
interesting part is also the same as the interesting part of the previous reduction: for ev-
ery forbidden pair in C2, we create the path-blocking gadget of Figure 3.5. The second
interesting part is the transformation of forbidden pairs in C1. For this, we introduce the
so-called forced-choice gadget, which extends the path-blocking gadget.

The idea behind the reduction is to link the finding of a coordination set to the finding
of an exclusive choice for C1. That is, if we have found a coordination set — which means
that whatever refinement arcs the agents might add, no refinement cycle can be created —
then we should automatically have an exclusive choice for C1 such that no path from s to
t can be found — whatever exclusive choices we come up with for C2.

The forced-choice gadget (Figure 3.7) forces a coordination set to be constructed by
adding only constraints within the forced-choice-gadget agents (‘C1-agents’). This is ac-
complished by introducing two potential paths from s to t through each C1-agent: if the
agent adds either refinement arc (aj , bj) or refinement arc (cj , dj), a path from s to t is

4Note that in case K = 0, this problem equals the CVP problem.
5Here, E0 \ C is a shorthand for the set of arcs from E0 that do not occur in any forbidden pair.
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Figure 3.7: The subgraph containing a forced-choice gadget, constructed for a forbidden pair cj =
{(xj , yj), (uj , vj)} ∈ C1.

created, and, since we connect t to s, a refinement cycle is created. The forced-choice
gadget allows both these potential paths to be broken by adding a single constraint: if
either (xj , yj) or (uj , vj) is added, then neither (aj , bj) nor (cj , dj) can be added without
creating a local cycle.

Finally, we have to slightly alter the agent connecting t to s for this reduction. Since
all inter-agent cycles pass through the agent connecting t to s, a coordination set can be
found simply by ‘blocking’ this agent. Therefore, we ensure that this agent has K + 1
refinement arcs to choose from in connecting t to s; breaking them all would require K +1
constraints, while we are only allowed to find a coordination set of size K.

Specifically, the reduction is specified as follows:

1. For every vi ∈ V , Ti = {vi}. For every pair cj = ({x, y}, {u, v}) occurring in C,
Tn+j contains the additional nodes xj , yj , uj , vj . Moreover, for every pair cj =
({x, y}, {u, v}) occurring in C1, Tn+j contains four additional nodes (tasks): aj , bj , cj

and dj . Finally, Tn+m+1 (m = |C|) contains the node s0, and the K + 1 (K = |C1|)
nodes t0, . . . , tk.

2. The set of arcs E contains the following elements:

(a) For every arc e = {u, v} ∈ E0 not occurring in a pair of arcs in C, e occurs in
E;

(b) For every constraint-pair of arcs cj = {(x, y), (u, v)} ∈ C, E contains the follow-
ing arcs

(x, xj), (yj , y), (u, uj), (vj , v), (yj , uj), (vj , xj)

(c) For every pair of arcs {(x, y), (u, v)} ∈ C1, E contains the following additional
arcs:
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(vj , aj), (vj , cj), (yj , aj), (yj , cj), (bj , xj), (bj , uj)

(dj , xj), (dj , uj), (s, aj), (s, cj), (bj , t), (dj , t)

(d) Finally, E contains the arcs {(t, t0), . . . , (t, tk)} and (s0, s).

Proposition 3.4.5. The coordination problem is Σp
2-complete

Again, we will prove this proposition by showing that the reduction from ∃∀¬PWFP
to CP is correct, i.e., we must prove that:

1. The transformation results in a correct instance of the CP problem; this means that
G = (T,E) must be a dag.

2. A yes-instance of the ∃∀¬PWFP problem maps to a yes-instance of the CP problem.

3. A yes-instance of the CP problem maps to a yes-instance of the ∃∀¬PWFP problem.

Proof. To understand that the transformation results in an acyclic graph G = (T,E), note
that all additional nodes in the CP instance either have only incoming arcs, or only out-
going arcs. Hence, these new nodes cannot introduce a cycle.

A yes-certificate for ∃∀¬PWFP consists of an exclusive choice X1 for C1. We can
directly map X1 to a yes-certificate ∆ for CP: (x, y) ∈ X1 → (xj , yj) ∈ ∆. To verify
that ∆ coordinates the CP instance, first note that any possible inter-agent cycle must
include a path from s to t, because the original PWFP-graph is acyclic. Second, note
that after adding ∆ to the CP-instance, the following agents still have the capability to
add refinement arcs: agent An+m+1 (m = |C|) can add the arcs {(t0, s0), . . . , (tk, s0)}
(each of which effectively creates a path from t to s), and the agents corresponding to a
C2-constraint-pair can add exactly one refinement arc, from a choice of two: agent An+j

(cj ∈ C2) can either add (xj , yj), or (uj , vj).
Clearly, the set of possible combinations of refinement arcs for the C2-agents corre-

sponds to the set of all possible exclusive choices X2 for C2. Consequently, since in the
∃∀¬PWFP instance there does not exist an exclusive choice X2 that creates a path from s
to t (given X1), there does not exist a set of refinement arcs in the CP instance connecting
s to t. Hence, ∆ is a coordination set.

We must show that any coordination set ∆ directly maps to an exclusive choice X1 for
C1. There are three types of agents that are capable of adding constraints to ∆:

1. The agent An+m+1: every inter-agent cycle in the coordination graph must pass
through this agent, since it connects t to s. Hence, we can coordinate the instance
by ‘blocking’ this agent. However, that would take K + 1 constraints, since agent
An+m+1 can add K + 1 refinement arcs that would connect s to t.

2. The C1-agents: the forced-choice gadget enables two direct paths from s to t, either
by adding refinement arc (aj , bj) or by adding (cj , dj). Adding either (xj , yj) or
(uj , vj) blocks both these direct paths.
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3. The C2-agents: clearly though, the C2-agents cannot break the direct paths from s
to t created by the C1-agents.

Hence, a coordination set must consist of arcs from C1-agents, exactly one per agent, since
we have K C1-agents, and we are allowed to use K constraints.

It is easy to see that a coordination set indeed maps to an exclusive choice X1 solving the
PWFP instance: note that in the coordinated CP instance, agent An+m+1 is unconstrained,
allowing it to add refinement arcs connecting t to s. If other agents (i.e, C2-agents, since
these are the only other agents capable of adding refinement arcs) would be able to add
refinement arcs connecting s to t, then it would be possible to create an refinement cycle.
This is not possible, however, since ∆ is a coordination set. Hence, no path can be created
from s to t, and consequently, X1 is a yes-certificate for the ∃∀¬PWFP instance.

3.4.3 Subclasses in NP

We have not been able to find any non-trivial coordination instances in P, but we can
identify structural characteristics of a coordination instance without which the coordination
problem is in NP, and coordination verification in P.

Note that, intuitively, the difficulty with verifying a coordination set ∆ is that we have
to verify, for a possibly exponential number of sets R =

⋃n
i=1 Ri of refinement arcs, whether

E ∪∆ ∪R is acyclic if, for all i = 1, . . . , n, ≺i ∪ ∆i ∪Ri is acyclic.
In this section, we identify a class of coordination instances for which, in order to

solve the coordination verification problem, we merely have to check whether E∪∆∪REF
contains no inter-agent cycles. We will show that this check can be performed in polynomial
time, so CVP is in P for these instances and, consequently, coordination itself is in NP.

Definition 3.4.6 (Local Planning Cycle). A Local Planning Cycle, abbreviated as
locplan-cycle, for agent Ai is an intra-agent cycle C ⊆ (REF i∪Ei), such that C∩REF i 6= ∅
and C ∩ Ei 6= ∅.

Proposition 3.4.7. Let I = (T, G = (T,E) ) be a coordination instance such that its coor-
dination graph contains no locplan-cycles, then the following two assertions are equivalent:

1. The instance I is coordinated.

2. The coordination graph contains no inter-agent cycles.

Proof.

(1: instance coordinated → no inter-agent cycles)
Suppose on the contrary that the instance is coordinated, yet the coordination graph
still contains an inter-agent cycle C.

The fact that I is coordinated means that there does not exist a set R =
⋃n

i=1 Ri,
R ⊆ REF , such that (i) for all i = 1, . . . , n :≺i ∪ Ri is acyclic, while (ii) (E ∪ R)
contains a cycle. Hence, the presence of the inter-agent cycle C implies that if we
choose R = REF ∩ C, then there must be at least one agent for which ≺i ∪ Ri

contains a cycle C ′.
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It follows almost immediately that C ′ is a locplan-cycle:

• C ′ cannot consist exclusively of arcs in ≺i, because ≺ is acyclic;

• C ′ cannot consist exclusively of arcs from Ri, otherwise C would not be an
elementary cycle: if all arcs in C ′ are also in C, then C is not elementary.

The presence of the locplan-cycle C ′ is a contradiction.

(2: no inter-agent cycle → instance coordinated)
If the coordination graph contains no inter-agent cycle, then it does not contain a
refinement cycle. Hence, by Theorem 1, the instance is coordinated.

We cannot directly claim that if an instance contains no locplan-cycle, then it is in NP.
We must also require that it is not possible that after adding some arcs ∆ to ≺i (e.g., for
coordination purposes), ≺i ∪ ∆∪REF i contains a locplan-cycle (REF defined with regard
to the precedence relation ≺ ∪ ∆). In other words, the coordination instance must not be
refinable to a coordination instance that contains a locplan-cycle.

Proposition 3.4.8. Let I = (T, (T,E) ) be a coordination instance that cannot be refined
to contain a locplan-cycle, i.e., there exists no set of additional constraints ∆ =

⋃n
i=1 ∆i,

such that:

1. ∆i ⊆ (Ti × Ti),

2. ≺i ∪ ∆i is acyclic, and

3. the coordination graph contains a locplan-cycle.

Then I is in NP.

Proof. Let ∆ be a solution for I, i.e., I ′ = (T, (T,E ∪ ∆) ) is a coordinated instance.
Verifying that ∆ is solution for I can be done by verifying that the coordination graph
contains no inter-agent cycle, according to Proposition 3.4.7. To prove that I is in NP, we
need to show that this check can be performed in polynomial time.

Consider the subset feedback arc set problem, which is defined as follows:

Let ISFAS = (V,E0, X), with (V,E0) a directed graph and X ⊆ E0, find a
minimum subset F ⊆ E0, such that F contains at least one arc from every
directed cycle in (V,E0) that also intersects X.

The set of inter-agent cycles in the coordination graph is the set of cycles intersecting
INTER, so we can choose X = INTER.

As SFAS is in NP6, we can verify in polynomial time that F = ∅ is a subset feedback
arc set for the coordination graph of I ′ = (T,E ∪∆). This implies that we can verify in
polynomial time that the coordination graph of I ′ contains no inter-agent cycles.

6The decision variant of SFAS is in NP, SFAS itself is in NPO.
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At the moment, we do not yet know if we can verify, in polynomial time, whether an
arbitrary coordination instance can contain locplan-cycles, i.e., whether Proposition 3.4.8
applies. However, even if such a check would require exponential time, Proposition 3.4.8
can still be of value if we can prove that a certain class of instances cannot contain locplan-
cycles. For instance, in the following two corollaries, we identify classes of coordination
instances that are in NP, on account of the fact that these instances cannot contain a
locplan-cycle.

Corollary 3.4.9. The set of coordination instances for which each agent has either at
most one task in T in, or at most one task in T out, is in NP.

Proof. We will prove that we cannot form a locplan-cycle. Let C be an inter-agent cycle,
let Ri = REF ∩ (Ti × Ti) for all i = 1, . . . , n, and let Ri(C) be the intersection of C with
Ri.

For this type of coordination instance, all arcs in Ri have precisely one task (node) in
common: if, for instance, an agent Ai has exactly one task t ∈ T in, then every arc in Ri

has starting vertex t. Hence, C cannot be an elementary inter-agent cycle in case Ri(C)
contains more than one arc.

Due to Proposition 3.3.1, we can rule out the case where Ri(C) is a single arc e: any
cycle in the coordination graph — including a locplan-cycle — must contain at least two
arcs from REF .

Corollary 3.4.10. The set of coordination instances in which for all agents Ai, the sets
T in ∩ Ti and T out ∩ Ti are totally ordered, is in NP.

Proof. Let C be an inter-agent cycle, and suppose on the contrary that it is possible that
C induces a locplan-cycle C ′ in some agent Ai. Let Ri = REF ∩ (Ti × Ti), and let Ri(C)
be the intersection of C (and C ′) with Ri.

From Proposition 3.3.1, we know that C ′ must contain at least two refinement arcs. If
we denote C ′ = (e1, . . . , em), then let ej be the first arc in Ri(C) and let ek be the last arc
in Ri(C) (first and last defined in terms of the indices i of arcs ei in C ′).

We have (ran(ek),dom(ej)) ∈ ≺i, since all arcs from ek . . . em to e1 . . . ej are in E.
However, we also have (dom(ej),dom(ek)) ∈ ≺i, because all arcs in T in are totally ordered.
Together, this implies e−1

k = (ran(ek),dom(ek)) ∈ ≺i. This, however, means that ek cannot
be in Ri.

3.4.4 Approximability of the coordination problem

In approximation theory a commonly used measure for approximation quality consists of
the quotient of the costs of an approximated versus the cost of an optimal solution. This is
the so-called approximation ratio. An approximation ratio of 1 indicates optimality, while
large approximation ratios indicate poor approximations. The approximation ratio plays an
important role in the definition of a well-known complexity class in approximation theory:
the class APX. An optimization problem (such as CP) is said to be in APX, if a polynomial
time approximation algorithm exists such that for every instance (and particularly for very
large ones) the approximation ratio in bounded from above by a constant.

Unfortunately, it is very unlikely that we are able to find constant-ratio approximations
for the coordination problem, since we will show in this section that the APX-hard Feedback
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Vertex Set problem (FVS) reduces to the coordination problem. This means that if we are
able to find constant-ratio approximations for the coordination problem, then the reduction
below would immediately yield a constant-ratio approximation for FVS. However, despite
much research effort, the best known approximations for FVS are O(log |V | log log |V |) [21,
9].

Although slightly disappointing, it is of course not surprising that coordination is APX-
hard, as it is outside NPO. However, the reduction will show that even for severely restricted
coordination instances, the APX-hardness holds. In fact, we reduce the FVS problem to
coordination instances where agents have at most two tasks. Due to Propostion 3.4.8, these
instances are clearly in NP, yet they are still APX-hard.

The feedback vertex set problem is defined as follows:

Definition 3.4.11. The Feedback Vertex Set problem is: given a directed G0 = (V,E0)
and integer K, find a subset of vertices F ⊆ V such that F contains at least one vertex for
every directed cycle in G, and |F | ≤ K.

To reduce FVS to CP, we split each vertex up into two vertices — one vertex incident
on all incoming arcs, the other incident on all outgoing arcs — and create an agent for
those two tasks. The reduction is illustrated in Figure 3.8.

a2

a1

b1
b2

c1

c2

d1
d2

e1e2

(b)(a)

a

b

c

d

e

Figure 3.8: (a) an FVS instance and (b) its corresponding CP instance, coordinated by adding
constraint (d2, d1).

More formally, given a FVS instance G0 = (V,E0), we obtain a coordination instance
(T, G = (T,E)) by the following transformation:

1. For every vj ∈ V , we construct the agent Aj , having set of tasks Tj = {tij , toj}.

2. For every (vj , vk) ∈ E0, E contains the arc (toj , t
i
k).

The correspondence between a feedback arc set and a coordination set is given by:

vj ∈ F ↔ (toj , t
i
j) ∈ ∆
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Proposition 3.4.12. The coordination problem, restricted to instances where is each agent
is allowed at most two tasks, is APX-hard.

The correctness of Proposition 3.4.12 can be understood by noting that a cycle in the
FVS-instance maps to a refinement cycle in the coordination graph: that is, if all agents
Aj along the cycle were to add the refinement arc (tij , t

o
j), then a cyclic joint plan would

result. The transformed CP instance is solved if and only if, for every refinement cycle,
at least one agent Aj intersected by the cycle adds the constraint (toj , t

i
j). Consequently, a

coordination set of cardinality K maps to a feedback vertex set of cardinality K — and
vice versa.



Chapter 4

Approximation Techniques

Focus on the solution, not on the problem. — Terry Goodkind

Your mind can only hold one thought at a time; make it a positive and con-
structive one. — H. Jackson Brown Jr.

Quotations like the above are readily associated with happiness gurus, psychiatrists, and
fantasy novelists. Disregarding their advice, we have found that by focusing on the problem
in the previous chapter, we are now able to narrow the focus of our ‘constructive thoughts’.
In fact, by focusing on the problem in the previous chapter, in particular on the complex-
ity of the coordination problem, we now know that we need not seek for either optimal
algorithms, or for algorithms that approximate the optimal solution to within a constant
factor — no tractable algorithm meeting either of these criteria exists. Hence, the best we
can hope for is to find heuristic approximation techniques that turn out to be efficient.

If it is difficult to compare algorithms with regard to their (worst-case) efficiency, then
how are we supposed to judge if one approximation technique is better than another? For
one, by noting that we are not simply dealing with some problem from graph theory, but
rather with a problem regarding the coordination of autonomous agents. Definition 2.3.3
of the coordination problem seeks only guarantee a feasible solution while maximizing
planning autonomy. An autonomous agent, however, will also want to maximize its coordi-
nation autonomy, that is, to be able to have some influence on the process that additionally
constraints its goal and the goals of other agents.

Ideally, this chapter would have presented a number of negotiation protocols, compared
to each other using a set of criteria appropriate for evaluating multi-agent negotiation
(cf. [17]). Unfortunately, this part of our research has not yet reached that level of maturity.
Instead, we will present three different kinds of approximation techniques, and identify how
each can be applied in, or adapted to, a multi-agent negotiation protocol.

In Section 4.1, we present the most naive of the three approaches: we simply add
constraints one by one until we are certain that the composite task has been coordinated.
In Section 4.2, we take the approach of reducing the coordination problem to a problem
from graph theory, of the family of feedback arc set problems. Due to the fact that the
feedback arc set problems are in NP, while coordination is outside NP, this reduction is —
for general coordination instances — not weight-preserving, but at least it is always sound.

35
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Finally, in Section 4.3, we present an approach to coordination that is based on the idea of
partitioning the agents’ goals into smaller sets of tasks. This is an inherently distributed
approach to coordination, and it was first presented in [28].

4.1 Iteratively Constructing a Coordination Set

A coordination set is a subset of REF−1. An arbitrary set ∆ ⊆ REF−1 may not be a
coordination set for two reasons:

1. E ∪∆ is cyclic,

2. E ∪∆ is not cyclic, but the coordination graph still contains a refinement cycle.

a b

δ1 δ2

Figure 4.1: (a): Unconstrained, (b): for ∆ = {δ1, δ2}, E ∪∆ is cyclic.

In Case 2, agents are left with too much planning freedom, and, to coordinate this
composite task, we must simply add more constraints. Case 1 is depicted in Figure 4.1.
Before choosing a set ∆, in Figure 4.1a, there are no intra-agent constraints. After choosing
∆ = {1∪2}, E∪∆ contains a cycle. Thus, we must build a coordination set without making
the precedence relation E ∪∆ cyclic.

a b

t1 t2 t3 t4 t1 t2 t3 t4

t5t6t7t8 t5t6t7t8

Figure 4.2: (a): Unconstrained, (b): with new constraint set [E ∪ (t2, t7)]+.

Figure 4.2 illustrates what happens if we add a single constraint. In Figure 4.2a (the
same as Figure 4.1a), there are no intra-agent precedence constraints. By adding constraint
t2 ≺ t7, constraints t3 ≺ t6 and t4 ≺ t5 are also added to ≺. This is because ≺ is a
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transitive relation. If t2 ≺ t7 is added to E, then a path is created from t3 to t6 in E.
Thus, (t3, t6) ∈≺ = [E]+. The same holds for (t4, t5).

Figure 4.2 illustrates that adding a single constraint from REF−1 doesn’t make the
precedence relation cyclic. The fact that an arc in REF−1 doesn’t create a cycle is easy
to understand, since the inverse of a refinement arc can be interpreted as a cycle-breaking
arc. Some arcs in REF−1 are also in REF , though, the set of cycle-enabling arcs. A single
refinement arc cannot make the precedence relation cyclic, however, since any cycle in the
coordination graph contains at least two refinement arcs.

Lemma 4.1.1. Let T = (T,E) be a composite task. For all δ ∈ (REF ∪ REF−1),
(T,E ∪ {δ}) is a composite task.

Proof. The definition of a composite task imposes two conditions on the pair (T,E ∪ {δ}):

1. E ∪ {δ} ⊆ T × T ,

2. E ∪ {δ} is acyclic.

The first condition is met since E ⊆ T×T and δ ∈ T×T . To prove the second condition,
suppose on the contrary that E ∪ {δ} is cyclic, and let δ = (t1, t2). Since (C \ {δ}) ⊆≺, we
can conclude t2 ≺ t1.

case 1 δ ∈ REF : According to Definition 3.1.5, REF ∩ INTRA−1 = ∅. This contradicts
δ = (t1, t2) ∈ INTRA−1.

case 2 δ ∈ REF−1: Then δ−1 = (t2, t1) ∈ REF . According to Definition 3.1.5, REF ∩
INTRA = ∅. This contradicts (t2, t1) ∈ INTRA.

Thus, we can add a single constraint from either REF or REF−1 without making the
precedence relation cyclic. We will now show that adding such a constraint brings us closer
to a coordinated composite task.

Lemma 4.1.2. Let T = (T,E) be a composite task. If REF T 6= ∅, then if
δ ∈ (REF−1

T ∪ REF−1
T ) and T ′ = (T,E ∪ {δ}), then REF T ′ ⊂ REF T .

Proof. Recall the definition of REF :

REF =
n⋃

i=1

(T in
i × T out

i ) \
(
INTRA−1 ∪ INTRA

)
The set

⋃n
i=1(T

in
i × T out

i ) is unchanged by adding δ to E. Furthermore,

INTRAT ′ ⊇ INTRAT ∪ {δ} (4.1)
INTRA−1

T ′ ⊇ INTRA−1
T ∪ {δ−1} (4.2)

Hence,

REF T ′ ⊆ REF T
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Also, since δ ∈ REF T ∨ δ−1 ∈ REF T , but not (δ ∈ REF T ′ ∨ δ−1 ∈ REF T ′), we have that

REF T ′ ⊂ REF T

The set REF is finite, so after adding a finite number of additional constraints δ ∈ REF ,
the set REF will be empty. If that is the case, the composite task has been coordinated,
by corollary 4.1.3.

Corollary 4.1.3. Let T = (T,E) be a composite task, such that REF = ∅. Then GT is
acyclic.

Proof. By proposition 3.3.1, any cycle in the coordination graph of a composite task con-
tains at least two arcs from the set REF . Consequently, if REF is empty, then the coor-
dination graph is acyclic.

Using Lemmata 4.1.1 and 4.1.2, and Corollary 4.1.3, we can define an algorithm to find
an approximate coordination set. Lemma 4.1.1 can be used to show how we can iteratively
add constraints from REF−1 to E. Corollary 4.1.3 provides the stop condition for the
algorithm. Finally, Lemma 4.1.2 tells us that this stop condition will be reached using the
iteration specified by lemma 4.1.1.

Algorithm 1 Iterative Coordination

1: Input: composite task T = (T,E)
2: Output: coordination set ∆
3: ∆ = ∅
4: while REF (E∪∆) 6= ∅ do
5: Choose δ ∈ REF−1

(E∪∆)

6: ∆ = ∆ ∪ {δ}
7: end while
8: return ∆

In lines 4 and 5 of Algorithm 1, we denote the set REF by REF (E∪∆) to emphasize
that REF changes (is reduced) as a result of adding constraints to the precedence relation
[E ∪ ∆]+. In every iteration, a constraint δ ∈ REF−1 is selected for addition to ∆. We
pick δ arbitrarily, though obviously the algorithm can be extended at this point to let a
heuristic function guide the selection of the next constraint δ.

Theorem 2. Given a composite task T , Algorithm 1 returns a coordination set ∆.

Proof. We need to prove that

1. for every iteration, E ∪∆ is acyclic,

2. on termination, GT ′ , T ′ = (T,E ∪∆), contains no refinement cycles.

ad 1 Initially, ∆ = ∅ and E is acyclic. Hence, E ∪∆ is acyclic initially.
In each iteration, Algorithm 1 adds constraints δ ∈ REF−1

E∪∆ to ∆. By Lemma 4.1.1,
adding a single δ ∈ REF−1

E∪∆ to ∆ will not make E ∪∆ ∪ {δ} cyclic.
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ad 2 The algorithm stops when REFE∪∆ = ∅. Lemma 4.1.2 tells us that this stop
condition will be reached: the initial set REF is a finite set and in each iteration

REFE∪∆∪{δ} ⊂ REFE∪∆

Once REFE∪∆ = ∅ — with E ∪ ∆ still acyclic — GT ′ is acyclic according to Corollary
4.1.3.

Algorithm 1 constrains agents until the set REF is empty. This means that all planning
autonomy — with regard to goal refinements that are relevant for coordination — is taken
away from the agents. An obvious enhancement of Algorithm 1 would be to terminate
the algorithm as soon as the composite task has been coordinated. However, in Chapter 3
we have shown that the problem of checking whether a composite task is coordinated is
co-NP-complete.

Even if it were possible to polynomially verify coordination, this would not ensure that
an adapted version of Algorithm 1 would coordinate while leaving the agents some planning
autonomy with regard to arcs in REF , as is illustrated in Figure 4.3. In Figure 4.3, it is
shown that, by adding a single constraint (and at least one constraint must be added to
coordinate this instance), the set REF might become empty.

a b

t1 t2 t3 t4

t5t6t7t8 t5t6t7t8

t1 t2 t3 t4

Figure 4.3: (a): Unconstrained, (b): the set REF is empty after adding t2 ≺ t7.

Nevertheless, we might improve the average efficiency if we adapt Algorithm 1 to stop
as soon as the coordination graph contains no more inter-agent cycles, a property which
can be verified in polynomial time (see Section 4.2).

4.1.1 Adapting iterative coordination to enable negotiation

In Line 5 of Algorithm 1, an arbitrary δ ∈ REF−1 is chosen for placement in ∆. To enable
agents to choose which constraints are added, we can replace this line with an auction,
in which all agents submit bids for the addition of constraints. The lowest bid wins the
auction, the winning agent Ai adds the corresponding constraint to ∆ (and ≺i) and he is
paid the amount his bid for compensation.

The downside of this approach is illustrated in Figure 4.4. Suppose agent A2 wins the
auction. He agrees to add constraint δ (Figure 4.4b) and is paid the amount of his bid.
In this case we see that agents A3 and A4 also receive a constraint. However, they have
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a b

A1 A2 A3 A4 A1 A2 A3 A4

δ

Figure 4.4: (a): Uncoordinated instance and (b): after agent A2 adds constraint δ.

not agreed to accept these constraints and, furthermore, they receive no compensation for
receiving these constraints.

The addition of a single constraint δ actually results in a set φδ of additional constraints:

φδ = [≺ ∪ {δ}]+− ≺

To ensure that agents only receive constraints for which they have entered a bid, all agents
that have a constraint in φδ should be allowed to bid for δ. If the resulting aggregate bid
for δ wins the auction round, all agents will be paid the amount of their bid.

Algorithm 2 is a coordination algorithm that starts an auction, in every iteration of the
algorithm, to decide which constraint to add next. In one auction round, aggregate bids
bδ are collected for all δ ∈ REF−1. An aggregate bid bδ is a set of bids bδ,Ai

, one bid for
each agent Ai for which φδ intersects Ti × Ti.

The aggregate bid that has the lowest cost (which is the sum of all the prices of the
agent bids) wins the auction. To conclude the iteration, the winning δ (if there are more
aggregate bids with the same total price, one is chosen at random) is added to the current
∆ and the agents are paid the amount they specified in their bid.

The function makeBid in Line 12 represents the agent strategy. In the above negoti-
ation protocol, the strategy of an agent should determine the price of a bid. If agents are
autonomous, they can choose any strategy they like. In Algorithm 3, we give an example
of an agent strategy.

In Algorithm 3, an agent calculates the cost (to him) of the set φδ. He makes one
plan for his local goal where φδ does not need to be adhered to, and one plan where the
constraints in φδ do need to be adhered to.1 The difference in cost between the two is the
price an agent assigns to the bid for constraint δ.

Algorithm 2 maintains coordination autonomy for all agents: an agent receives only
constraints he has agreed to receive and he is compensated for these constraints by the
amount he has specified in his bid.

1Note that since planning is NP-hard in general, the agents may need to use a heuristic function instead
of actually constructing a plan.
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Algorithm 2 iterativeCoordinationAuction

1: Input: coordination instance I = (T, G = (T,E))
2: Output: coordination set ∆ ⊆ REF−1

3: ∆ = ∅
4: T ′ = (T,E ∪∆)
5: while GT ′ contains inter-agent cycles do
6: {Collect agent bids}
7: B = ∅
8: for all δ ∈ REF−1 do
9: bδ = ∅

10: for all Ai ∈ A do
11: if φδ ∩ Ti × Ti 6= ∅ then
12: bδ,Ai

= invoke agent function makeBid(Ai, φδ)
13: bδ = bδ ∪ {bδ,Ai

}
14: end if
15: end for
16: B = B ∪ {bδ}
17: end for
18: {Select cheapest constraint δ as bid winner}
19: Bmin = {b ∈ B|∀1 ≤ j ≤ |REF | : totalPrice(b) ≤ totalPrice(bj)}
20: Choose bmin ∈ Bmin

21: δmin = constraint(bmin)
22: {Increment coordination set and notify winners}
23: ∆ = ∆ ∪ δmin

24: W = {Ai ∈ A|φδmin
∩ Ti × Ti 6= ∅}

25: for all i ∈ W do
26: price = price(bδmin,Ai

)
27: pay(Ai,price)
28: end for
29: end while

Algorithm 3 makeBid

1: Input: Set of constraints φδ, agent Ai

2: Output: bδ,Ai
: agent Ai’s bid for the addition of δ

3: p1 = makePlan(Ti,≺i)
4: p2 = makePlan(Ti,≺i ∪ φδ)
5: price = c(p2)− c(p1)
6: bδ,i = (δ,price)
7: Return bδ,i
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Proposition 4.1.4. Let ∆ be a coordination set resulting from Algorithm 2. For agent
Ai, let

φ∆,Ai = ([≺ ∪ ∆]+− ≺) ∩ (Ti × Ti)

For all e ∈ φ∆,Ai, agent Ai has received the payment it has specified.

Proof. Suppose on the contrary that there exists an e ∈ φ∆,Ai for which agent Ai has not
specified or received payment.

Algorithm 2 chooses one constraint δ per iteration. Hence, there must be an iteration
n such that

e ∈ φδ = [≺ ∪ ∆n−1 ∪ {δ}]+ − [≺ ∪ ∆n−1]+

Since φδ∩ (Ti×Ti 6= ∅), agent Ai has been asked (Line 12) to submit a bid for δ. In the bid
for δ, agent Ai has specified the aggregate price for all constraints in φδ ∩Ti×Ti, including
e. Since δ is added to ∆ in iteration n, agent Ai has been paid the amount of his bid (Line
27), contrary to the assumption.

4.2 Coordination and Feedback Arc Sets

The coordination graph contains all cycles that can be created through refinement. If
we remove a feedback arc set F , i.e., a set of arcs such that every cycle in the graph
has an arc in F , then the coordination graph is acyclic. Thus, there exists an intuitive
transformation from the coordination problem to the feedback arc set problem. All of the
variations of the feedback arc set problem discussed in this section are NP-complete [9].
As the coordination problem is outside NP2, the transformation specified in this section is
not a weight-preserving Turing reduction.3

Definition 4.2.1 (FAS). Given a directed graph G = (V,E0), find a minimum feedback
arc set, i.e., a subset of arcs F ⊆ E0 such that F contains at least one arc from every
directed cycle in G.

Removing a feedback arc set from a graph makes that graph acyclic. For coordination
purposes, however, we do not need to remove all cycles from the coordination graph; we
are only interested in removing refinement cycles. The Subset Feedback Arc Set problem
(SFAS) is used for finding a feedback arc set such that only interesting cycles are covered.

Definition 4.2.2 (SFAS). Given an instance I = (V,E0, X), with (V,E0) a directed graph
and X ⊆ E0, find a minimum subset F ⊆ E0, such that F contains at least one arc from
every directed cycle in (V,E0) that also intersects X.

From definition 4.2.2, we see that the set of interesting cycles is characterized by a
subset X ⊆ E0 of arcs. Thus, we need to find a set of arcs that characterizes the set of
refinement cycles in the coordination set. Due to the fact that the coordination verification
problem is co-NP-complete, there does not exist a set X of arcs (specifiable beforehand)
that characterizes the set of refinement cycles, since the existence of interesting cycles in
an SFAS instance is polynomially verifiable. We can, however, characterize a superset of

2unless the polynomial hierarchy collapses
3See for instance [27, 14] for the definition of a Turing reduction.
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the set of refinement cycles; the set of all inter-agent cycles is the set of cycles intersecting
INTER.

Choosing X = INTER, removing a subset feedback arc set from the coordination graph
will remove all inter-agent cycles and thus all refinement cycles from the coordination graph.
However, note that we are not at liberty to remove any arbitrary set of arcs from the the
coordination graph. Recall that ET = INTER ∪ INTRA ∪ REF . The sets INTER and
INTRA are part of the precedence relation ≺. Constraints in ≺ must be adhered to at
all times, so these arcs may not be removed. From Proposition 3.3.1, we know that every
cycle in the coordination graph must contain at least two arcs from REF . This means that
we can construct a feedback arc set for the coordination graph using only arcs in REF .

To direct a feedback arc set solver to consider only refinement arcs for placement in a
feedback arc set F , we solve the Blackout Subset Feedback Arc Set problem instead. In the
BSFAS problem, arcs that are marked as blackout arcs may not be placed in the feedback
arc set.

Definition 4.2.3 (BSFAS). Given an instance I = (V,E0, X,B), with (V,E0) a directed
graph, X ⊆ E0 and B ⊂ E0, find a minimum subset F ⊆ (E0 \ B), such that F contains
at least one arc from every directed cycle in (V,E0) that also intersects X.

If we have a subset feedback arc set F ⊆ REF , we can remove F from the coordination
graph (thereby removing all refinement cycles, coordinating the instance) by adding its
inverse F−1 to the set of precedence constraints E. However, as exemplified by Figure 4.1,
adding an arbitrary set of constraints can create a cyclic precedence relation. We will show
that if the feedback arc set F contains no redundant arcs4, then adding ∆ = F−1 to E will
not introduce any cycles. Of course, for E ∪ F−1 to be acyclic, the feedback arc set itself
must be acyclic. In [27], it is proved that if a feedback arc set F is cyclic, then it contains
redundant arcs.

Proposition 4.2.4 (From [27]). For every BSFAS instance I = (V,E0, X,B) with so-
lution F such that X ∩ F = ∅, there exists at least one redundant arc in every cycle in
F .

Before Proposition 4.2.4 we said that adding ∆ = F−1 will not introduce cycles if F
contains no redundant arcs. Proposition 4.2.4 states the extra condition that X ∩ F must
be empty. With X = INTER ⊆ B, i.e., all arcs in X are blackout arcs, this condition is
always met in our setting. Using Algorithm 4, we can inspect each of the arcs in F and
remove an arc if it is redundant.

In two steps, we will now prove that we can find a coordination set ∆ by inverting a
feedback arc set F . We will prove that (i) adding ∆ to the precedence relation will not
make E ∪ ∆ cyclic, and that (ii) after adding ∆ to E, the coordination graph contains
no refinement cycles. However, we will first specify the reduction from the coordination
problem to BSFAS.

4Given a feedback arc set F , an arc e ∈ F is redundant if F − e is still a feedback arc set.



44 CHAPTER 4. APPROXIMATION TECHNIQUES

Algorithm 4 reduceFAS

Input: feedback arc set F = {e1, . . . , en}
Output: feedback arc set containing no redundant arcs
for all 1 ≤ i ≤ n do

if isFAS(F − ei) then
F = F − ei

end if
end for
return F

Algorithm 5 CP � BSFAS
Input: coordination instance Ic = (T, G)
Output: coordination set ∆
Ifas = (VT , ET , INTER, INTER ∪ INTRA)
F = BSFAS(Ifas)
F ′ = reduceFAS(F )
return ∆ = F ′−1

Lemma 4.2.5. Let I = (T, G) be a coordination instance, and let F be a feedback arc set,
free of redundant arcs, for the BSFAS instance Ifas = (VT , ET , INTER, INTER∪INTRA),
and let ∆ = F−1. Then E ∪∆ is acyclic.

Proof. Let T = (T,E) be the composite task prior to adding ∆, and let GT be its corre-
sponding coordination graph.

Suppose on the contrary that E ∪ ∆ contains a cycle C. Since both E and ∆ are
acyclic, C must contain arcs from both E and ∆; let ∆C = {δ1, . . . , δk} = C ∩∆, and let
EC = E ∩ C. Note that two consecutive arcs from ∆C are connected by a path in E, i.e.,
ran(δi) ≺ dom(δi+1).

Since δ−1
i is non-redundant (i = 1, . . . , k), there is at least one cycle Ci in GT that is

only covered in F by δ−1
i .

We can construct the cycle C ′ =
(⋃k

i=1 Ci \ δ−1
i

)
∪ EC in GT (illustrated in Figure

4.5), i.e., C ′ is the cycle constructed from the paths (provided by Ci \ δ−1
i ) from dom(δi)

to ran(δi), for all i = 1, . . . , k, united with the paths in EC connecting consecutive δi.
The cycle C ′ is not covered in F : for no i does the path from dom(δi) to ran(δi) contain

an arc in F , since δ−1
i is the only arc covering Ci. Also, since EC ∩ F = ∅, the set EC

contains no arc that covers C ′ in F . But if C ′ is not covered in F , then F is not a feedback
arc set, which is a contradiction.

Theorem 3. Let I = (T, G) be a coordination instance and let ∆ = Algorithm5(I). Then
∆ is a coordination set for I.

Proof. First, note that T ′ = (T,E ∪ ∆) is a composite task: E ∪ ∆ is acyclic, due to
Lemma 4.2.5, and also ∆ ⊆ T × T .

Second, it is not difficult to see that GT ′ contains no refinement cycles. In fact, GT ′

doesn’t contain any inter-agent cycles: every inter-agent cycle C in GT (T = (T,E), i.e.,
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Arcs in

Arcs in

∆

≺

Figure 4.5: The outer cycle is not covered in the feedback arc set.

the uncoordinated composite task) has at least one arc e ∈ F = ∆−1. Inverting this arc
breaks C.

r1

r2

Figure 4.6: Despite the presence of an inter-agent cycle, this instance is coordinated.

For the family of feedback arc set problems, O(log |V | log log |V |)-approximations have
been developed [21, 9]. However, as the coordination problem is outside NP, these ap-
proximation ratios do not apply to general coordination instances. In Figure 4.6, which
repeats Figure 3.3, we show a coordination instance for which an optimal feedback arc
set translates to a sub-optimal coordination set: the coordination instance in Figure 4.6 is
coordinated, as a cycle in EJ can only be created if agent A2 makes a locally cyclic plan, by
adding both refinements r1 and r2. Thus, the empty set is a solution for the coordination
instance. A solution for the corresponding BSFAS instance, is not empty, however, as there
exists an inter-agent cycle that must be covered. Consequently, the approximation ratio of
the BSFAS transformation is not bounded by a constant: a non-empty coordination set is
infinitely poorer than an empty coordination set.

However, for coordination instances that cannot contain locplan-cycles (Definition 3.4.6),
the above BSFAS transformation is a weight-preserving Turing reduction, because of the
fact that for such instances, the instance is coordinated iff the coordination graph contains
no inter-agent cycles. This means that for those coordination instances, the approximation
ratios for the FAS problem also apply to the coordination problem.
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4.2.1 Negotiation and BSFAS coordination

Algorithm 5 is an inherently centralized approach to approximating the coordination prob-
lem. However, we can use the idea of solving the coordination problem with BSFAS to
formulate an approximation technique that gives the agents some control over the distribu-
tion of constraints. Effectively, the algorithm we present in this section takes an approach
opposite to Algorithm 2 of Section 4.1: instead of incrementally adding constraints to an
initially empty coordination set, we remove constraints from an initially maximal coordi-
nation set. In fact, we remove redundant arcs, as long as the set of constraints is a feedback
arc set, and consequently, a coordination set.

As an initial feedback arc set, we can choose F = REF . Thus, initially, agents have
no planning autonomy (with regard to coordination-relevant refinements, at least). By
repeatedly removing redundant arcs from F (and F = REF always contains redundant
arcs — see Proposition 4.2.6), agents are returned planning autonomy. Agents negotiate
over who may remove which redundant arc next. Coordination autonomy in this algorithm
is thus the freedom to negotiate over who will regain the most planning autonomy.

Algorithm 6 SFASCoordinationAuction

1: Input: coordination instance I = (T, G), (blackout subset) feedback arc set F
2: Output: coordination set ∆ ⊆ REF−1

3: while F contains redundant arcs do
4: ∆ = F−1

5: {Find redundant arcs}
6: R = {e ∈ F |F − e is a feedback arc set }
7: {Invite agents to enter bids}
8: B = ∅
9: for all δ ∈ R−1 do

10: bδ = invoke makeBidFAS(agent(δ),∆, δ)
11: B = B ∪ {bδ}
12: end for
13: {Find highest bid}
14: ∆max = {b ∈ B|∀1 ≤ i ≤ n : price(b) ≥ price(bi)}
15: Choose δmax ∈ ∆max

16: {Decrement feedback arc set and bill the winner}
17: F = F − δ−1

max

18: bill(agent(δmax), price(bδmax))
19: end while

In a single iteration of Algorithm 6, the set of redundant arcs is found first. Then, for
each redundant arc, the corresponding agent (i.e., agent Ai if arc δ ∈ Ti × Ti) is asked to
submit a bid. The highest bid (ties are broken randomly) wins the auction. The winning
agent may (and must) remove δ from ∆, and in return he must pay the amount of his bid.

The function makeBidFAS represents the agent strategy. In Algorithm 7, we have
given an example of an agent strategy, and it is similar to Algorithm 3. An agent makes
two plans: one for which the set of (additional) constraints is ∆, one for which the set of
(additional) constraints is ∆− δ. The difference in cost between both plans represents the
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Algorithm 7 makeBidFas

1: Input: Agent Ai, current set of constraints ∆, redundant constraint δ
2: Output: Bid bδ

3: p1 = plan(Ti,≺i ∪ ∆)
4: p2 = plan(Ti,≺i ∪ (∆− δ))
5: savings = c(p1)− c(p2)
6: bδ = (δ, savings)
7: Return bδ

amount the agent saves by not having to adhere to δ; the agent assigns this amount to the
price of his bid.

We would like to have some guarantee that removing redundant arcs in the fashion of
Algorithm 6 will result in a coordination set of low cardinality. This means that we want
to be able to remove a lot of arcs. Initially at least, a there are a lot of redundant arcs.

Proposition 4.2.6. Let F = REF be a feedback arc set for the coordination graph, then
for all e ∈ F , e is redundant.

Proof. From proposition 3.3.1, we know that any cycle in the coordination graph contains
at least two arcs in REF . Therefore, any single e ∈ F may be removed from F , such that
F − e is still a feedback arc set: Every cycle in the coordination graph that involves e is
covered by at least one more refinement arc in F .

Unfortunately, removing a redundant arc from the feedback arc set does not always
result in more planning freedom for an agent. That is, the removal of a constraint e−1 ∈ F−1

does not necessarily result in e being in REF afterwards, in case

e−1 ∈ [E ∪ (F − e)−1]+ (4.3)

We have not been able to find satisfyingly good lowerbounds on the performance of
Algorithm 6, but we can prove that at least one agent will regain a refinement arc.

Proposition 4.2.7. Let ∆ be a coordination set returned by Algorithm 6, T = (T,E) and
T ′ = (T,E ∪∆). REF T ′ is non-empty if REF T is non-empty.

Proof. In case GT contains no inter-agent cycles, then ∆ = ∅ and REF T ′ = REF T . In
case GT does contain inter-agent cycles: suppose on the contrary that REF T ′ = ∅. Let
δ ∈ ∆; since all arcs in ∆ are not redundant, there must be at least one inter-agent cycle
C in GT that is only covered (in the feedback arc set F = ∆−1) by δ−1. A cycle in the
coordination graph contains at least two refinement arcs (Proposition 3.3.1), so all other
arcs in REF T ∩C must be in INTRAT ′ : they are not in REF T ′ , because REF T ′ is assumed
empty, and they are not in INTRA−1

T ′ because their inverses do not cover C in the feedback
arc set.

If an arc e is in REF T but also in INTRAT ′ , then we know from Lemma 4.2.8 (below)
that there exists an e′ (possibly e itself), such that e′ ∈ ∆ and (dom(e), ran(e)) ∈ [E ∪ {e′}]+.

Again, since e′ is not redundant, there must be a cycle C ′ (in GT ) such that only e′−1

is the only arc in F covering C ′. Thus, the other arcs in REF T ∩C ′ must be in INTRAT ′ .
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For any of these arcs in INTRAT ′ , we know there must be an arc e′′ ∈ ∆, such that
(dom(e′), ran(e′)) ∈ [E ∪ {e′′}]+.

We can continue this line of reasoning forever if either there is an unlimited number of
vertices in the coordination graph (which obviously there is not), or, in order to ‘construct’
the next cycle C ′′, we may reuse vertices. It is easily verified that the for the latter option,
a reused vertex can be reached from itself in E ∪∆ (illustrated in Figure 4.7). This means
that there is a cycle in E ∪∆, contradicting the fact that ∆ is a coordination set.

δ

C

e′
C ′

e
′′

C
′′

t

t

Figure 4.7: If task t is used to form to distinct cycles, then t can be reached from itself.

Lemma 4.2.8. Let ∆ be a coordination set returned by Algorithm 6, T = (T,E) and
T ′ = (T,E ∪ ∆) and assume that REF T ′ = ∅. If there is an arc e ∈ INTRAT ′ but also
e ∈ REF T , then there is an arc e′ ∈ ∆, such that (dom(e), ran(e)) ∈ [E ∪ {e′}]+.

Proof. We will show that there exists an e′ with the required properties. Since we have
only added arcs in ∆ to E, there must be a minimum set ∆′ ⊆ ∆ such that e ∈ [E ∪∆′]+,
i.e., there is a path in E ∪ δ from dom(e) to ran(e) that uses all arcs from ∆′.

Let ∆′ = {δ1, . . . , δn}. For every δi, we know that there must be at least one cycle
Ci in GT that is only covered, in the feedback arc set F = ∆−1, by δ−1

i , since all δi are
non-redundant. Also, since REF T ′ = ∅, we know that in GT ′ , Ci is a path in E ∪∆ from
dom(δi) to ran(δi).

It is easily verified that there exists a path in E ∪∆ from dom(δ1) to ran(δn) using the
‘cycle-paths’ C ′

i. In GT , this path forms an inter-agent cycle that is broken, in GT ′ , only
by e′ = (dom(δ1), ran(δn)). Hence, e′ must be in ∆. Also, e′ forms a path from dom(e) to
ran(e) in E ∪ {e′}. Hence, e′ is the arc we seek.

4.3 Partitioning Local Goals

In the previous sections, we approximated the coordination problem by directly construct-
ing a coordination set ∆. In Algorithm 1, we added constraints to ∆ one by one; in Section
4.2, we found a coordination set by inverting an acyclic feedback arc set for the coordina-
tion graph. In this section, we do not concentrate on constructing a coordination set —
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although after coordination, a coordination set can be distinguished — but instead we coor-
dinate by partitioning agent task sets (Ti, i = 1, . . . , n) into segments, and by constraining
the agents to execute their segments in a linear order.

4.3.1 Agent dependencies

Suppose agent Ai has a task t that is preceded by a task t′, t′ ≺ t, and t′ ∈ Tj , j 6= i.
In other words, the task t from agent Ai is preceded by task t′ from agent Aj . Agent Ai

is dependent on agent Aj , as Ai cannot execute t until agent Aj has finished t′. We can
visualize these dependencies in the agent dependency graph DA, which was first defined
in [28].

Definition 4.3.1 (Agent Dependency Graph). Let (T, G) be a coordination instance.
The agent dependency graph DA is the graph DA = (A,≺A), where (Ai ≺A Aj) iff there
exist tasks t ∈ Ti and t′ ∈ Tj such that t ≺ t′.

To avoid confusion, note that the direction of the arcs in DA is in the direction of the
precedence relations that exist between tasks; so Ai ≺A Aj means that Aj is dependent on
Ai because Ai has a task that precedes one of Aj ’s tasks.

If we restrict the agent dependency graph to being constructed from only Tinter tasks
(which we can do according to Proposition 3.1.3), then then the agent dependency graph
is a graph contraction of the coordination graph: all tasks belonging to one agent are
grouped into a single vertex, with the same inter-agent adjacencies as the tasks that make
up the agent vertex. This means that all intra-agent precedences are ignored, leaving only
inter-agent precedences.

Proposition 4.3.2. If DA is acyclic, then GT contains no refinement cycles.

Proof. Trivial; any two consecutive agents in an inter-agent cycle in GT are connected in
DA.

a b

A1 A2

A1 A2

Figure 4.8: (a): GT and (b): DA for a the same (coordinated) instance.

The requirement that the agent dependency graph may not contain a cycle is stronger
than the requirement that the coordination graph may not contain refinement cycles. That
is, if the agent dependency graph is acyclic, then the coordination graph contains no inter-
agent cycles, but the implication in the other direction does not hold. The coordination
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graph in figure 4.8 contains no refinement cycles and the instance is, by definition, coordi-
nated. The agent dependency graph is still cyclic, however.

To coordinate an instance, it would suffice to make the agent dependency graph acyclic.
However, it is not obvious how this should be accomplished. The set ≺A is the result of
both the original composite task (T,E), which may not be altered, and of task allocation,
which, in the logistics domain for instance, is also fixed. We will not change the actual task
allocation, but we will artificially refine it. Consider the situation where each task is allo-
cated to a different agent. Then ≺A=≺ , so DA is acyclic because ≺ is. DA becomes cyclic
when tasks are grouped into agents. We will partially undo this by dividing agents into
sub-agents. More specifically, we will partition agent Ai’s set of tasks Ti into {Ti1 , . . . , Tik}
and associate a sub-agent Aij with each segment Tij . In DA, agent Ai is replaced by a
chain of sub-agents i1, . . . , ik. Figure 4.9 shows a composite task and an agent dependency
graph where agent A1’s task set has been partitioned. Note that the segments of agent
A1 are ordered in such a way that DA is made acyclic. In Figure4.9(c), the corresponding
coordination graph is shown.

A2

t1

A1

t2

t3

t4

a b c

{t3, t4}

{t1}

{t2}A11

A12

A2

t1

A1

t2

t3

t4

A2

Figure 4.9: (a): GT , (b): coordinated DA and (c): corresponding GT .

4.3.2 A coordination algorithm

We will now present an algorithm to partition the set of tasks Ti for agent Ai, which is
also described in [27]. The intuitive idea behind the algorithm is that each agent tries to
schedule a task t as soon as all tasks preceding it have already been scheduled by other
agents. With scheduling a task t we mean that an agent commits to execute t in a certain
order with regard to his other tasks: namely, before tasks that have not yet been scheduled
(i.e., tasks that will be scheduled in a subsequent segment) and after tasks that have been
scheduled earlier (i.e., in earlier segments). The agent creates a segment of all tasks that
can be scheduled at that moment, separating it from the remaining, unscheduled tasks.
Tasks in the scheduled segment are added to a global store done, that is distributed among
all agents.

The result of Algorithm 8 is that task sets are partitioned, or equivalently, that agents
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Algorithm 8 distributed partitioning
1: Input: set of local tasks Ti, and for each t ∈ Ti the set Tt = {t′ ∈ T |t′ 6∈ Ti ∧ t′ ≺ t} of

prerequisites assigned to other agents.
2: Output: a positive integer k and a partition {Ti1 , . . . , Tik}
3: k := 1
4: while Ti 6= ∅ do
5: repeat
6: Tik := {t ∈ Ti|Tt ⊆ done}
7: until Tik 6= ∅
8: done := done ∪ Tik

9: Ti := Ti \ Tik

10: k := k + 1
11: end while

are divided into subagents. The partitioning results in a set of precedence constraints ∆:

∆ =
n⋃

i=1

ki⋃
j=1

Tij × Tij+1 (4.4)

In words, all tasks in segment j must precede all tasks in segment j + 1. This implies the
following lemma, which states that there can be no precedence constraint t ≺ t′ if t is in a
‘higher’ segment that t′.

Lemma 4.3.3. Let T = (T,E) be a composite task and let
⋃

i

⋃
j Tij be the segments

resulting from Algorithm 8. Then,

∀i, t1, t2 ∈ Ti[t1 ≺ t2 → (t1 ∈ Tij ∧ t2 ∈ Tik ∧ j ≤ k)]

Proof. Suppose on the contrary that there is a pair {t1, t2} ⊆ Ti for some agent Ai such
that t1 ≺ t2 and t1 is in a higher segment, i.e.,

t1 ∈ Tij ∧ t2 ∈ Tik ∧ j > k

From Line 6 of Algorithm 8, we deduce that if t2 is in a lower segment, then at some point
all of t2’s inter-agent prerequisites are in done, whereas for t1 there is at least one task
t3 ∈ Tm,m 6= i such that t3 ≺ t1. However,

t3 ≺ t1 ∧ t1 ≺ t2

implies

t3 ≺ t2

Hence, t2 also has an inter-agent prerequisite that has not been scheduled yet, which is a
contradiction.

The precedence constraints that result when an agent schedules a segment affect only
the scheduling agent: no other agents receive any additional constraints.
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Proposition 4.3.4. If an agent Ai schedules a segment in Algorithm 8, then no agent
other than Ai receives any additional constraints.

Proof. Consider the kth segment scheduled by agent Ai, and let

∆k = Tik × (Ti \ [Ti1 ∪ · · · ∪ Tik−1
])

be the set of corresponding local precedences.
Suppose on the contrary that another agent Aj receives an additional constraint δ

because of ∆k. In that case, there is a path in E ∪∆k from dom(δ) to ran(δ), such that
dom(δ) 6≺ ran(δ) (with ≺ the precedence relation prior to adding ∆k).

However, if dom(δ) ≺ t for some task t ∈ Tik , then dom(δ) must already have been
scheduled by agent Aj . Also, if t′ ≺ ran(δ), then ran(δ) cannot have been scheduled yet
by agent Aj . Thus, ran(δ) will be scheduled in a later segment than dom(δ). Hence,
dom(δ) ≺ ran(δ), contrary to the assumption that δ is a result of ∆k.

We can interpret the partitioning as the creation of sub-agents. We denote the sub-
agent of agent Ai, segment j by Aij . Now we can define the sub-agent dependency graph
D∗

A = (
⋃

i

⋃
j Aij ,≺∗

A), where

≺∗
A=

⋃
≺seg ∪{(Aij , Akm)|i 6= k,∃t ∈ Tij ,∃t′ ∈ Tkm : t ≺ t′} (4.5)

and

≺seg=
n⋃

i=1

ki⋃
j=1

Aij ×Aij+1 (4.6)

The following proposition states that the set of constraints defined in Equation 4.4 is
a coordination set.

Proposition 4.3.5. If D∗
A is an acyclic graph, then GT contains no refinement cycles.

Proof. Because D∗
A is also a graph contraction of the coordination graph, it is easy to

understand that if there is a refinement cycle in the coordination graph, then there must
be a cycle in D∗

A.
The difference between DA and D∗

A is that in the sub-agent dependency graph, tasks
belonging to one agent may be stored in a different segment.

Let C be a refinement cycle in GT and let p = (t1, . . . , tm) be a pass of C through an
agent. If t1 6≺ tm, then t1 and tm are tasks in the same segment, so, in D∗

A, the pass is
replaced by the single vertex corresponding to that segment.

If t1 ≺ tm, then t1 and tm may either be in the same segment, or tm may be in a higher
segment. In the latter case, the pass p in GT is replaced in D∗

A by the chain of sub-agents
subagent(t1)− · · · − subagent(tm).

Because C is a refinement cycle, we do not have to consider the case tm ≺ t1; the
precedence tm ≺ t1 would make a local cycle with the pass p.
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4.3.3 Partitioning strategies

In Chapter 5, where we examine the cost of precedence constraints, we will discuss how
coordinating using partitioning affects cost. For now, we only point out that (i) additional
precedence constraints are in general undesirable and that (ii) the composition of the
coordination set depends on the way task sets are partitioned. From Equation 4.4, we
can see that partitioning into a higher number of segments likely increases the number of
additional precedence constraints.

To understand how a set of tasks is partitioned and into how many segments, we will
take a closer look at Algorithm 8. In Line 6, the kth segment is constructed; all tasks
that have not been scheduled yet, but which can be scheduled now because other-agent
prerequisites are in done, will be in segment k.

Algorithm 8 is a distributed algorithm which is executed simultaneously by all agents.
Therefore, we do not know exactly when the “now” is in the phrase “all tasks that can
be scheduled now”, and, consequently, we cannot (in general) predict which partitions will
result.

To be able to analyze partitioning strategies deterministically, we present a centralized
variation on Algorithm 8. Two parameters that can vary are:

1. When to schedule. In Algorithm 8, the segment is scheduled as soon as there is a
non-empty set of tasks to schedule.

2. Which tasks to schedule. In Algorithm 8, the maximum segment is always scheduled:
all tasks that can be scheduled, are scheduled now.

A heuristic for parameter 1 might take into account that waiting a while before scheduling
might result in a larger segment, if more agents have scheduled their tasks first. Of course,
if every agent tries to wait, nothing will happen. A heuristic for parameter 2 might be to
schedule less than the maximum segment. A certain task may be postponed if the agent
prefers the task to be in the same segment as some as yet unschedulable task.

In Algorithm 9, we will vary only the first parameter, for the second parameter we will
only choose the maximum-segment strategy.

In Algorithm 9 the ‘real time’ of Algorithm 8 is replaced by steps. In one step all
agents construct their maximum segment (Algorithm 10) given the tasks that are in done
after the previous step. Then, the centralized component uses some heuristic function
schedulePolicy to determine which agent must schedule his segment this step. All
other agents do not schedule. We have experimented (Chapter 6) with three different
scheduling policies.

Policy 1: at the start of the algorithm, a random ordering of the set of agents is made.
In each step, the next agent in the order will be instructed to schedule its segment.

Policy 2: after all agents have built their segment Tik , all agents evaluate the following
term:

|Tik |
|Ti|

In words, the size in tasks of the current segment relative to the size of the entire local
set of tasks. The agent with the highest value is instructed to schedule his segment.
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Algorithm 9 Centralized Partitioning
1: Input: composite task T = (T,E)
2: Output: P = {T11 , . . . , T1k1

, . . . , Tn1 , . . . , Tnkn
}: For all agents, the segments corre-

sponding to the partitioning of their set of tasks.
3: P = ∅
4: done = ∅
5: while done 6= T do
6: {Build the set of schedulable segments}
7: S = ∅
8: for all Ai ∈ A do
9: si = buildSegment(Ai,done)

10: S = S ∪ si

11: end for
12: {Pick a segment to schedule}
13: s = schedulePolicy(S)
14: done = done ∪ s
15: P = P ∪ s
16: end while
17: Return P

Algorithm 10 buildSegment

1: Input: set done of scheduled tasks
2: Output: segment si ⊆ Ti

3: for all t ∈ Ti do
4: Tt = {t′ ∈ T |t′ ≺ t ∧ t′ 6∈ Ti}
5: end for
6: si = {t ∈ Ti|Tt ⊆ done}
7: Return si

Policy 3: similar to 2, but now all agents must evaluate the term:

|(
⋃

j 6=i{Tj × Tik})∩ ≺ |
|(

⋃
j 6=i{Tj × Ti})∩ ≺ |

in words, the number of inter-agent precedences satisfied by segment k divided by
the total number of inter-agent precedences.

Heuristic 1 is similar to Algorithm 8, since agents schedule in a random order. Heuristic
2 is based on the idea that if large segments, relative to the size of Ti, are scheduled, then
a small number of segments will be needed. Heuristic 3 is based on the idea that if a large
number of precedences are satisfied for this segment, then there will be few precedences
left to cause partitioning of the remaining set of tasks.

4.3.4 Negotiation in partitioning coordination

Adapting Algorithm 9 to include negotiation, there are two obvious changes to make. First,
agents can negotiate over who must schedule the next segment. Second, agents can offer
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to schedule a smaller segment than the maximum segment. In Algorithm 11, we have
assumed that agent autonomy only pertains to the freedom to negotiate when to schedule.
With regard to the composition of the segment to schedule, it is convenient to assume that
agents still schedule the maximum segment.

Algorithm 11 Partitioning Negotiation

1: Input: composite task T = (T,E)
2: Output: P = {T11 , . . . , T1k1

, . . . , Tn1 , . . . , Tnkn
}: For all agents, the segments corre-

sponding to the partitioning of their set of tasks.
3: P = ∅
4: done = ∅
5: while done 6= T do
6: {collect bids}
7: B = ∅
8: for all Ai ∈ A do
9: si = invoke buildSegment(Ai,done)

10: bi = invoke makeBidSegment(Ai, si)
11: B = B ∪ bi

12: end for
13: {Lowest bid wins}
14: Bmin = {b ∈ B|∀1 ≤ i ≤ n : price(b) ≤ price(bi)}
15: Let bmin ∈ Bmin

16: s = segment(bmin)
17: done = done ∪ s
18: pay(agent(bmin), price(bmin))
19: end while

Algorithm 12 makeBidSegment

1: Input: agent Ai, segment s ⊆ Ti

2: Output: bid b for scheduling s
3: ps1 = plan(s)
4: ps2 = plan(Ti \ s)
5: cost1 = c(ps1) + c(ps2)
6: p = plan(Ti)
7: cost2 = c(p)
8: price = cost1 − cost2
9: b = (s,price)

10: Return b

In Algorithm 11, a round of negotiation is started to determine who schedules the
next segment. All agents make a bid to schedule a certain segment for a certain price.
The lowest bid wins the round5; the winning agent is paid the amount of his bid, and he
schedules his segment.

5Here it is convenient to assume that agents schedule their maximum segment, in order to avoid agents
submitting singleton segments to try to win the auction.
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We have given an example of an agent strategy in Algorithm 12, in which the agent
determines the height of his bid by calculating the cost of scheduling the current candidate
segment. First, he makes a plan to execute the candidate segment and a plan to execute
the remainder of the unscheduled tasks. He also makes a single plan for all the as yet
unscheduled tasks (so including the tasks of the candidate segment). The difference in cost
between the cost of the latter plan and the sum of the costs of the former two plans, is the
cost of scheduling the candidate segment. This cost he assigns to the price of his bid.

Coordination autonomy in Algorithm 12 is ensured by the fact that an agent can specify
the compensation it wants for every constraint it receives. By Proposition 4.3.4, we know
that an agent only receives constraints when he schedules his segment. In Algorithm 12,
an agent only schedules a segment if he wins the auction, thereby receiving compensation
for the cost he incurs.

4.4 Concluding Remarks

In this chapter, we have addressed a number of issues that must be tackled if the approx-
imation techniques presented in this chapter are to be extended to negotiation protocols.
In particular, we have tried to adapt the algorithms in such a way that agents only receive
the constraints they have agreed to receive. However, other issues remain.

Rosenschein and Zlotkin [17] have identified a number of criteria to judge negotiation
mechanisms (mechanism = protocol + strategy), among others:

• Efficiency: a solution should contain few constraints; both globally, and for individual
agents.

• Stability: agents should have no incentive to deviate from the presented strategies.

• Distribution: ideally, the protocols should not require a centralized component.

For the moment, the analysis of our mechanisms in terms of these criteria, and the im-
provement of our mechanisms based on the results of such an analysis, remain future work.

Even if our negotiation mechanisms may not be ready to be deployed in a commercial
multi-agent system, they can still serve as cost-based heuristic approximation functions. In
the standard coordination algorithms, we arbitrarily pick e.g. the next constraint to add
or the next segment to schedule, but instead of making arbitrary selections, we can guide
the selection process by making use of heuristic functions. The agent strategies we have
defined in this chapter can be viewed as heuristics in which the next step taken either has
the lowest immediate cost (incremental coordination and coordination by partitioning) or
the highest immediate gain (FAS-based coordination).



Chapter 5

Applying the Framework to a
Planning Problem

Do you remember chalk hearts melting on a playground wall
Do you remember dawn escapes from moon-washed college halls
Do you remember the cherry blossoms in the market square
Do you remember I thought it was confetti in our hair
By the way, didn’t I break your heart?
— Kayleigh by Marillion

This is an oh-by-the-way kind of chapter. In the next chapter, we will present some
empirical results, by solving multi-modal logistics problems using our pre-planning coor-
dination approach. To judge the viability of this approach, we will compare the quality
of our solutions to solutions produced by more traditional multi-agent planning systems.
Traditionally, plans are compared on the basis of the cost of the (joint) plan, not on the
basis of the degree of autonomy for the agents, on which we have concentrated so far.

In this chapter, we need to address three issues before we can define the cost of a joint
plan:

1. We need to encode the logistics problem in terms of the task-framework1 of Chapter 2.
In particular, this means that, given a logistics instance, we need to (i) identify tasks,
(ii) identify precedence constraints between tasks, and (iii) allocate tasks to agents
(Section 5.2).

2. We need to define the cost of a plan. It turns out that representing a plan as a
composite task (i.e., as an abstract plan), is insufficient for this purpose. Thus, we
need to choose a suitable representation for concrete plans. If we have a concrete-plan
representation, we can not only reason about the cost of a plan, but also about the
cost of precedence constraints (Section 5.3).

3. For a concrete joint plan, timing issues become relevant, since the concrete plans of
the individual agents must be synchronized. Fortunately, we can show that — under

1Other, more traditional techniques to encode (multi-agent) planning problems include STRIPS [10] and
PDDL [11].
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certain assumptions — the concrete plans of the agents can be scheduled without
fundamentally changing these plans, that is, without affecting the cost of these plans
(Section 5.4).

Oh, by the way, we must also define the multi-modal logistics problem.

5.1 The Logistics Problem

The logistics problem is about delivering packages. There are packages that need to be
transported between locations, and there are vehicles (trucks and planes) that can transport
the packages. We wish to deliver all packages at minimum cost. There are a number of
locations spread over a number of cities. Within cities, trucks carry out deliveries; between
cities, planes transport the packages. There are many variations of the logistics problem
and the one we will treat is a fairly simple one. Different variations of the logistics problem
vary in (among others) these parameters:

1. The set of available actions: For instance, is the loading and unloading of packages
considered an action or are they assumed to happen automatically, e.g. always unload
when a package has reached its destination?

2. The cost function: For instance, is the cost of the action to move from location A to
location B dependent on the distance between A and B, or is the cost a constant?

3. The transportation infrastructure: Within a city, which locations are connected to
which other locations and between which cities exists a flight corridor?

4. Capabilities of the agents (vehicles) / the assignment of regions to vehicles: What is
the set of locations that each vehicle can reach? Can there be more than one agent
performing deliveries in a single region (set of locations), or is there e.g. only one
truck per city?

5. The capacity (for packages) of the vehicles: Unlimited capacity, capacity for k pack-
ages or unit capacity.

6. Order characteristics: For instance, are there deadlines associated with an order?

7. The objective function: Do we minimize workload (the cost of all actions), the total
time taken to execute all plans, or a combination of both?

Although this list of parameters is not exhaustive, it is sufficient for our purposes, since we
reduce the problem to the bare basics. The problem we will study, which we will call the
n-city problem, has the following characteristics:

1. Agents can perform one type of action: move(x,y) to move from location x to location
y.

2. Each move action costs 1, both for trucks and planes.



5.2. IDENTIFYING TASKS FOR A LOGISTICS PROBLEM 59

3. There are n cities, each with m locations. That is, the infrastructure is fully con-
nected. Within a city, any location is reachable from any other location. In every
city, there is one location that is also the airport. Every airport is directly reachable
from every other airport.

4. In each city, there is one truck and there is one plane flying between the cities.

5. Every vehicle has unlimited capacity.

6. There are no deadlines or time windows associated with a package. Each order is
fully specified by a pair of locations (l1, l2).

7. We minimize the total move cost, which equals the total number of moves using the
above cost function.

Given the above characteristics, an n-city instance is completely specified by:

• the number of cities n,

• the number of locations per city m,

• the set of orders O, each o ∈ O consisting of a pair of locations.

Hence, I = (O,n, m).
In case n equals 1 (i.e., only one city) we will call the problem the one-city problem.

We can represent a one-city instance by a pair (L,O) where L is a set of locations and
O ⊆ L× L is a set of orders. Since every location can be reached from any other location
in the one-city problem, locations that do not need to be visited for any order in O have
no use. Thus, we assume that

L = ran(O) ∪ dom(O)

Consequently, the set L becomes superfluous, i.e., a one-city instance is fully specified by
the set O. For clarity, however, we will represent a one-city instance as (L,O).

5.2 Identifying Tasks for a Logistics Problem

In this section, we transform a logistics instance I into a composite task T = (T,E). We
will call this process task identification. Due to the characteristics of the n-city problem,
task allocation is a by-product of task identification. If we define the set of capabilities of
an agent as the set of distinct move actions he can perform, then the intersection of the
capabilities of any two agents is empty. Therefore, each task that is found during task
identification can be performed by exactly one agent.

Tasks are identified on the basis of orders; each order results in a set of tasks. Which
tasks are identified, depends on the nature of the order. For order o = (l1, l2), if location
l1 and location l2 are in the same city, then the local truck can perform the order without
the help of other agents and we therefore associate a single task with o. On the other
hand, if l1 and l2 are in different cities, then the plane will have to transport the package.
Depending on the pickup and destination locations of the package, a truck might have to
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bring the package from l1 to the airport and the truck in the destination city might have to
pick it up from the airport in order to drive the package to its final location l2. We assign
a task to each stage in the journey.

We can thus distinguish two types of orders:

1. intra-city orders

2. inter-city orders, for which we distinguish three cases depending on the pickup and
destination locations:

• non-airport to non-airport
• non-airport to airport or vice versa
• airport to airport

We create a task for each stage in the journey of a package. Intra-city orders have only one
stage, so one task suffices. Inter-city orders can consist of one to three stages; three stages
for non-airport to non-airport, one for airport to airport and two stages are required in
case exactly one of the locations is an airport. Example 5.2.1 illustrates the identification
of tasks.

Example 5.2.1. Figure 5.1 shows the infrastructure of a simple logistics problem, with
n = 2 and m = 2. In Table 5.1, the orders and the resulting tasks are shown.

1

2

3

4

city 1 city2

Figure 5.1: Infrastructure of a two-city logistics instance.

To conclude task identification, we must introduce precedence constraints between tasks
where necessary. In a multiple-stage order, stages two and three cannot start until respec-
tively stages one and two have been completed. Thus, we insert a precedence constraint
between the task associated with stage one and the task associated with stage two and we
insert a constraint between the task associated with stage two and the task associated with
stage three. Table 5.1 gives the result of task identification for Example 5.2.1.

Constructing the coordination graph (Figure 5.2) for Example 5.2.1 illustrates the need
for multi-agent coordination in the logistics domain. There are three agents, the truck in
city one, the plane and the truck in city two. Note that task t1 does not appear in the
coordination graph, since t1 is not connected to any other-agent task (i.e., t1 6∈ Tinter).
Between the plane and Truck 2 a refinement cycle exists in the coordination graph. This
means that the agents need to coordinate: When left to their own devices, it is possible
that, if the agents refine their goals by (t6 ≺ t3) (the plane) and (t4 ≺ t5) (Truck 2), then
the cycle t3 − t4 − t5 − t6 − t3 is created in the joint plan.
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Order Tasks Precedences
(2, 1) t1 = (2, 1)
(2, 4) t2 = (2, 1)

t3 = (1, 3) t2 ≺ t3
t4 = (3, 4) t3 ≺ t4

(4, 1) t5 = (4, 3)
t6 = (3, 1) t5 ≺ t6

Table 5.1: Transformation of a logistics instance into a composite task.

t2
t3 t4

t5t6

Figure 5.2: There is refinement cycle in the coordination graph of Example 5.2.1.

5.3 A Model for Plan Cost

In Chapter 2, we represent a plan as a composite task (Tpi ,≺pi), that is, as a set of tasks Tpi

which will be executed in the (partial) order ≺pi . This representation was chosen because
(i) it contains all the information needed to tackle the coordination problem and (ii) it
leaves agents free to choose their internal plan representation.

Depending on the definition of plan cost, the above plan representation is not always
sufficient. The representation (Tpi ,≺pi) can be sufficient in case we define the cost of a
plan as the total execution time. Then, we can associate a duration d(t) with every t ∈ Tpi

and determine the longest path in ≺pi (measured as the sum of durations of tasks in the
path), which gives the minimal execution time that can be achieved given ≺pi .

In our research, however, we want to determine the workload of a plan. For this
definition of cost, the representation p = (Tpi ,≺pi) contains too little information. If we
would associate a cost c(t) with every task t ∈ Tpi , then the cost of a plan would be the
same for all possible plans; whatever (correct) plan an agent comes up with, the set of
tasks in the plan is always Tpi , which is equal to Ti. The cost of all possible joint plans
would also be the same, since the set of tasks in J always equals T .

The fact that a plan p for a goal Gi = (Ti,≺i) always contains exactly the set of tasks
Ti is a result of our idea of what a task is. We view a task as a goal, an assignment, a
state that has to be reached. Given a goal Gi, an agent should make a plan to perform all
assignments in Ti. This set Ti does not change; no other assignments are somehow invented
or allocated. However, an agent is free to choose the set of actions that will be executed
to accomplish all tasks in Ti. Thus, tasks specify what needs to be done, actions specify
how it will be done.
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A task is performed by executing actions. In STRIPS-like fashion, we think of a task
as a goal that can be reached by executing a sequence of actions (A more general approach
would have been to consider partially ordered sets of actions.). We will call the sequence
of actions to perform a goal Gi = (Ti,≺i) a concrete plan.

Definition 5.3.1 (Concrete Plan). A concrete plan p is a linear order of actions: p =
(o1, . . . , om).

We identify an action in a concrete plan by e.g. ‘operator oi’ instead of ‘action ai’ to
avoid confusion with agent Ai. We associate a cost c(o) with each action o. The cost of a
concrete plan is the sum of the costs of all actions in the (concrete) plan.

Definition 5.3.2 (Plan Cost). Given a concrete plan p = (o1, . . . , on) , the cost of p is:

c(p) =
n∑

i=1

c(oi)

Recall from Section 5.1 that, in the logistics domain, we assign a cost of 1 to every
move-action. Thus, the cost of a concrete plan is equal to the number of actions or moves
in the concrete (logistics) plan.

5.3.1 Concrete plans in the logistics domain

For the logistic one-city problem, we will now introduce a slightly different representation
of a concrete plan that is more convenient and more readable. Using this alternative rep-
resentation, we can give a clear definition of the one-city problem. Instead of representing
a concrete plan by the actions in the plan, we can also represent the plan by listing the
sequence of locations an agent visits as a result of the (move-)actions he performs.

We divide time into steps: In each step, an agent can perform a single action (a move).
If the agent performs the action move(x, y) at time t, then he must be at location x at time
t, and he will be at location y at time t+1. Hence, an agent’s plan is fully specified by the
sequence of locations that indicate where the agent is at each time step. We will call this
sequence of locations the visiting sequence. We can now formulate the one-city problem in
terms of a visiting sequence. (A note on notation: In the following definitions, if we have a
visiting sequence vs = (s1, . . . , sn), we will use the notation i <vs j, to indicate that i and
j are both indices in vs and that i is the smaller index, i.e., si occurs before sj in vs.)

Definition 5.3.3 (One-City Problem). Given a one-city instance (L,O), find a mini-
mum length visiting sequence vs = (s1, . . . , sn), ∀1 ≤ i ≤ n : [si ∈ L], such that

∀o = (l, l′) ∈ O : ∃i∃j[i <vs j ∧ si = l ∧ sj = l′]

During coordination, we impose precedence constraints on the order of execution of
an agent’s tasks. Each task corresponds to one (local) order, so a precedence constraint
between two orders means that an agent must first finish (=deliver) one order, before he
can start (=pick up) the other order. Since Definition 5.3.3 does not support the notion of
‘precedence constraint’, we will give another definition of the one-city problem, especially
for use in our task-framework.
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Definition 5.3.4 (Constrained One-City Problem). Let (L,O,≺o) be a one-city in-
stance, augmented with a partial order ≺o⊆ O × O. Find a minimum-length visiting se-
quence vs = (s1, . . . , sn), ∀1 ≤ i ≤ n : [si ∈ L], such that:

∀o = (l, l′) ∈ O : ∃i∃j[i <vs j ∧ si = l ∧ sj = l′] (5.1)
o1 = (l1, l2) ≺o o2 = (l3, l4) → ∃i∃j∃k∃l[i <vs j <vs k <vs l ∧

l1 = si ∧ l2 = sj ∧ l3 = sk ∧ l4 = sl (5.2)

Similar to Definition 5.3.4, we could give a definition for the n-city problem. Such a
definition would specify that, for every agent, we need to find a visiting sequence satisfying
such a set of conditions, that (i) agent behaviour is coordinated and that (ii) all packages
can be delivered. This is not, however, the approach we take in our research. We do not
present algorithms to solve the entire composite task, thereby specifying the behaviour
of all agents. Instead, we first use a coordination algorithm and then we let agents find
solutions for their local subproblems. Thus, our approach to approximating the n-city
problem is as follows:

1. Transform orders into tasks (and precedences), allocating goals to agents.

2. Coordinate agents, restricting agent goals.

3. All agents make plans (visiting sequences) for their local goals, which are instances
of the constrained one-city problem.

5.3.2 The Cost of Precedence Constraints

Suppose we have the local goal Gi = ({t1, t2}, ∅), for some agent Ai, with t1 the task to
transport a package from location A to location B, and t2 the task to transport another
package from A to B. The visiting sequence A - B enables delivery of both packages. If we
introduce precedence constraint t1 ≺ t2, resulting in the goal ({t1, t2}, {t1 ≺ t2}), then the
minimum-length visiting sequence becomes A - B - A - B. Thus, because of the constraint
t1 ≺ t2, two extra moves are required: one from B back to A to pick up the second package,
one from A to B to deliver the second package. We define the cost of constraint t2 ≺ t1 as
the difference in cost between the first and the second plan, so in this case the cost is 2 (as
each additional move costs 1).

Definition 5.3.5. Let G = (T,≺) be a goal, ∆ ⊆ T ×T a set of precedences, p∗1 an optimal
plan for G and p∗2 an optimal plan for G′ = (T,≺ ∪∆). Then the cost of ∆ is:

c(∆) = c(p∗2)− c(p∗1)

We define the cost of a set of precedences relative to a goal, because it is not a constant,
but instead it depends on the set of constraints already present.

Example 5.3.6. Consider the constrained one-city instance with three locations in Figure
5.3, where each arrow represents a task. Thus, the set of tasks is T = {t1, t2, t3}, with

t1 = (1, 2)
t2 = (2, 3)
t3 = (3, 1)
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1 2

3

Figure 5.3: An order-graph: three locations and the orders between them.

Starting from goal (T, ∅), we can calculate the cost of adding ∆ = {t2 ≺ t1}.

p∗1 = (1, 2, 3, 1)
p∗2 = (2, 3, 1, 2)

c(p∗2) = c(p∗1), so the cost of {t1 ≺ t2} is 0.
Now consider the goal (T, {t3 ≺ t2}) and again ∆ = {t2 ≺ t1}.

p∗1 = (3, 1, 2, 3)
p∗2 = (3, 1, 2, 3, 1, 2)

Two extra moves are required for p∗2, so now the cost of ∆ is 2. (Note that, due to transitive
closure, the set {t3 ≺ t2} ∪ {t2 ≺ t1} also contains t3 ≺ t1).

Example 5.3.6 shows that a single constraint t2 ≺ t1 can separate more than just the
execution of tasks t2 and t1. We have encountered this problem before when discussing
negotiation algorithms. Adding a single constraint δ to ≺ results in the addition of the set
φδ to the precedence relation:

φδ = [≺ ∪ δ]+− ≺

Clearly, φδ depends on the set of constraints ≺ that is already ‘present’ at the time δ is
added.

During coordination, we usually do not add a single constraint, but a set of constraints
∆ (although ∆ can be constructed by adding one constraint at a time). Example 5.3.7
shows a constrained one-city instance in which the effect is listed of every possible set of
constraints ∆ on the optimal visiting sequence.

t1 = (1, 2)
r1 r2 r3

t2 = (3, 4) t3 = (1, 2) t4 = (3, 4)

Figure 5.4: Four tasks and the possible constraints between them.

Example 5.3.7. Figure 5.4 depicts a constrained one-city instance with four tasks. In
case ∆ = ∅, an optimal visiting sequence can be found by executing t1 and t3 in parallel,
resulting in subsequence 1,2, and by executing t2 and t4 in parallel, resulting in subsequence
3,4. Optimal visiting sequences for all tasks are e.g. 3,4,1,2; 1,2,3,4; 3,1,2,4; etc.

Table 5.2 lists optimal visiting sequences for all possible constraint sets.
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∆ Visiting sequence c(∆)
∅ 1,2,3,4 0
{r1} 1,2,3,4 0
{r1, r2} 1,2,3,4,1,2 2
{r1, r2, r3} 1,2,3,4,1,2,3,4 4
{r2} 1,2,3,4 0
{r2, r3} 3,4,1,2,3,4 2
{r3} 1,2,3,4 0

Table 5.2: For every possible coordination set an optimal visiting sequence and the cost of the
coordination set.

In general, adding constraints to an agent’s goal reduces the set of correct plans (i.e.,
the set of possible goal refinements) that are available to the agent. If we denote the set
of correct plans for a goal G = (T,E) by P(G), then for any ∆ ⊆ T × T

P(G′) ⊆ P(G)

where G′ = (T,E∪∆). Furthermore, if all minimum cost plans for G are in P(G)−P(G′),
then ∆ has non-zero cost, according to definition 5.3.5.

In case of the logistics domain, we can see that the cost of precedences is due to the
loss of positive relationships (cf. Von Martial’s research [30]). For instance, in Example
5.3.7, if ∆ = {d1, d2}, then the equality relationship between t1 and t3 can no longer be
utilized. Example 5.3.7 also shows that coordination cost can be zero even if the set of
possible optimal plans reduces. For instance, in case ∆ = {d2}, c(∆) = 0, but the visiting
sequence 3,1,2,4 is no longer a correct plan, yet it is a correct plan in case ∆ = ∅.

5.3.3 Coordinating with minimal cost

Having defined the cost of precedence constraints in Definition 5.3.5, we can give an al-
ternative definition of the coordination problem. In Definition 2.3.3, the objective is to
coordinate using a minimal number of constraints. Fewer constraints equals more auton-
omy for the agents and probably results in lower plan cost.

Using Definition 5.3.5, we can now formulate the coordination problem in such a way
that the objective is to minimize the cost of the coordination set ∆ (equivalently, to min-
imize the cost of the joint plan). If we find a coordination set ∆ such that costs are
minimized, then |∆| will probably be small, meaning agent autonomy is expected to be
high. Even if |∆| is not small for a minimum-cost coordination set, autonomous, rational
agents will want to use the freedom they are given to be able to construct a plan of low
cost. So from this point of view, autonomy is of secondary importance when compared to
plan cost.

An intuitive way to minimize cost is to associate a weight w(δ) with each δ ∈ REF−1

and then find a coordination set ∆ = {δ1, . . . , δn} such that
∑n

i=1 δi is minimal. However,
as we have seen in Examples 5.3.6 and 5.3.7, the cost of a single constraint is dependent on
which other constraints are in ∆ (and ≺). Thus, we define a weight function that associates
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a value (cost) with each subset of REF−1:

w : 2REF → N

The cost-based definition of the coordination problem is:

Definition 5.3.8 (Coordination Problem). The coordination problem (CP) is: given
a coordination instance (T, G) find a set of precedence constraints ∆ = ∆1 ∪ · · · ∪∆n with
∆i ⊆ Ti × Ti such that:

1. E ∪∆ is acyclic,

2. (T,E ∪∆) is a yes-instance of CVP, and

3. w(∆) is minimal,

Note that the original Definition 2.3.3 is a special case of Definition 5.3.8, where w(∆) =
|∆|, for all ∆ ⊆ REF−1.

5.4 The Joint Plan

Consider an n-city instance with two cities and two locations per city (Figure 5.1) and a
single order from location 2 to location 4. Using the task identification method from Section
5.2, we identify three tasks, which are listed in Table 5.3 along with visiting sequences to
perform the tasks.

Vehicle Task Visiting sequence
Truck 1 t1 = (2, 1) 2,1
Plane t2 = (1, 3) 1,3

Truck 2 t3 = (3, 4) 3,4

Table 5.3: Tasks and visiting sequences for a one-order n-city instance.

To know how to act, it is not sufficient for an agent to know which actions to perform
and in which order; an agent also needs to know when to perform them. Thus, at some
point, agents must determine a schedule for their concrete plan (i.e., start and finish times
for all actions). Suppose the agents of the above example make the schedules listed in
Table 5.4 for the visiting sequences listed in Table 5.3.

Vehicle time = 0 time = 1
Truck 1 2 1
Plane 1 3
Truck 2 3 4

Table 5.4: The location of the agents at times time = 0 and time = 1.

This example shows that agents are not free to choose their schedules even if the joint
plan J is feasible, because global (inter-agent) precedence constraints can be violated. For
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instance, between tasks t1 and t2 of Table 5.3 exist the precedence constraint t1 ≺ t2. This
means that t2 may not start until t1 has been completed. Table 5.4 shows that t1 has been
completed at time = 1, but t2 starts at time = 0.

A valid schedule for the tasks in Table 5.3 is given in Table 5.5. The ‘-’ entries indicate
that we do not care where the agents are at that time; since we minimize workload instead
of total time taken, the fact that e.g. Truck 2 is idle for the first two time steps does not
affect plan quality.

Vehicle time = 0 time = 1 time = 2 time = 3
Truck 1 2 1 - -
Plane - 1 3 -
Truck 2 - - 3 4

Table 5.5: The location of the agents at times time = 0 up to time = 3.

A scheduling algorithm must ensure that agents perform their tasks at such times, that
global precedence constraints are adhered to. It is easy to construct such a schedule for
a feasible joint plan J . If we find a topological sort s for the precedence relation EJ ,
we can schedule tasks in order s. This sequentializing of tasks is not a good scheduling
algorithm, however, because (i) it takes away planning autonomy from the agents and (ii)
by additionally constraining the order of task execution, it may increase plan cost.

5.4.1 Autonomy-preserving scheduling

After coordination, agents should be free to find plans independently of each other. The
result will be a set of concrete plans. The scheduling activity that follows must not alter
these concrete plans.2 Otherwise, agents would not have been autonomous in their planning
activity after all. We must show that if all agents make valid goal refinements, then there
exists a schedule that does not change the concrete plans of the agents. Note that for
such a schedule, the cost of the joint plan — if we define plan cost according to Definition
5.3.2 — is not affected by scheduling: the cost of the joint plan is determined by the set of
actions in the joint plan. If that set of actions remains unchanged by scheduling, then so
does plan cost.

To show that we can find an autonomy-preserving schedule, we must schedule the
concrete plans themselves. A schedule is a function

s : O → N

that maps actions (from the set of ‘operators’ O) to points in time. Since we assume that
each action requires one time unit, we can fully specify the timing of the joint plan by map-
ping all actions to their start times. Any feasible schedule, whether for tasks or for actions,
must respect the precedence constraints of the (refined) goals. However, precedences are
defined between tasks, not between actions. Thus, we must specify the relation between a
task and the actions that perform it.

2Assuming we define a concrete plan according to Definition 5.3.1.
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Assumption 5.4.1. Given a local goal Gi = (Ti,≺i) and a concrete plan pi = (o1, . . . , om)
for Gi, we assume that if pi performs all tasks in Ti, then, for every t ∈ Ti, we can identify
in pi the actions that start and finish t. Thus:

∀t ∈ Ti : ∃j, k : j ≤ k ∧ start(t) = oj ∧ finish(t) = ok

Using Assumption 5.4.1, we can associate an abstract plan with a concrete plan.

Definition 5.4.2. Let Gi = (Ti,≺i) be a local goal and pi = (o1, . . . , om) be a concrete
plan for Gi, then the abstract plan implied by pi is given by G′

i = (Ti,≺′
i), where

(t1, t2) ∈≺′
i↔ ∃j, k : j < k ∧ oj = finish(t1) ∧ ok = start(t2)

The refinement relation is defined (Definition 2.2.3) between goals, not between a goal
and a concrete plan. However, if p′ is the abstract plan corresponding to concrete plan p,
and p′ ` G, then we say that the concrete plan p refines G, p ` G.

Using Assumption 5.4.1, we can also state the requirements that a feasible schedule
must satisfy.

Definition 5.4.3 (Feasible Schedule). Let P be a set of concrete plans for a set of local
goals G. A schedule s is feasible iff:

1. if actions oi and oj are both in the same concrete plan p, and i < j, then s(oi) < s(oj)

2. if oi finishes task t and oj starts task t′, and t ≺ t′, then s(oi) < s(oj)

A feasible schedule imposes a partial order on the set of all actions. To show that a
feasible schedule exists for a given set of plans P = {p1, . . . , pn}, we need to show that
the set of actions from all concrete plans can be partially ordered, while respecting global
precedences and the ordering of actions within each concrete plan. We now introduce a
set of precedence constraints EP between the actions of all concrete plans, and show that
if the concrete plans refine a set of coordinated goals, then the set EP is acyclic and thus
a partial order.

Definition 5.4.4. Let T be a composite task and let P be a set of concrete plans. We
define the set EP of precedence constraints between actions in P . We have (oi, oj) ∈ EP

iff:

∃p ∈ P : (oi ∈ p ∧ oj ∈ p) ∧ (i < j) ∨
∃t1, t2 : finish(t1) = oi ∧ start(t2) = oj ∧ (t1 ≺ t2)

Proposition 5.4.5. Let T be a composite task, G = (G1, . . . , Gn) a set of goals such that
(i) JG ` T and (ii) J is coordinated, and let P = (p1, . . . , pn) be a set of concrete plans
such that for all i = 1, . . . , n pi ` Gi, then the set EP is acyclic.

Proof. Suppose on the contrary that there is a cycle C = (o1, o2, . . . , om, o1) in EP .

case 1: C contains only actions from one concrete plan (i.e., C is a local cycle). However,
a concrete plan cannot contain a cycle, because by Definition 5.3.1, a concrete plan
is a linear order.
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case 2: C contains actions from more than one concrete plan. Similar to Definition 3.1.6,
we can distinguish passes of C through the concrete plans. For every pass p =
(oi, . . . , ok), we have: ∃t1, t2 : start(t1) = oi ∧ finish(t2) = ok.

Consider the precedence relation between t1 and t2 in J . It is possible that either
t1 ≺ t2, or t1 6≺ t2, or t1 = t2, but not t2 ≺ t1. In the last case, (ok, oi) would be in
EP , and the corresponding concrete plan would be cyclic on account of the pass p;
this is a contradiction, since a concrete plan cannot be cyclic. This leaves two case
to consider:

case a: For all passes: for the pair t1, t2 corresponding to this pass, we have: t1 ≺ t2.
But then, EJ would be cyclic, which contradicts the fact that JG ` T .

case b: There are passes for which t1 6≺ t2. Since (t1, t2) is in Tin × Tout and not in
INTRA ∪ INTRA−1 , (t1, t2) must be in REF (by Proposition 3.3.1, there must
be at least two such passes).
It is intuitively clear that the set of passes forms an inter-agent cycle in the
coordination graph of J . Furthermore, it forms a locally acyclic inter-agent
cycle: a local cycle would require a cyclic concrete plan. However, the existence
of a locally acyclic inter-agent cycle in the coordination graph of J contradicts
the fact that J is coordinated.

case c: The case that for all agents, t1 = t2, is similar to case a: it implies that EJ

would be cyclic.

Thus, if agents make concrete plans that refine their coordinated goals, then the set
EP of precedences between actions is acyclic. If EP is an acyclic relation, then the relation
≺P = E+

P is a partial order.

Corollary 5.4.6. Let P = (p1, . . . , pn) be a set of concrete plans that refine a set of
coordinated goals G = (G1, . . . , Gn), then there exists a feasible schedule for P .

Proof. From Proposition 5.4.5, we know that the relation EP is acyclic, so we have a partial
order ≺P of precedences between actions of all concrete plans. By making a topological
sort from ≺P , we totally order the set of actions. We can form a feasible schedule by
assigning successive times to successive actions in the total order.
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Chapter 6

Empirical Results

The tragedy of science is the heartless murder of beautiful theories by ugly facts.
— Gregory Benford1

To test the viability of our pre-planning coordination approach in general, and of our
partitioning algorithms in particular, we have solved a set of multi-modal logistics instances.
To judge the quality of our solutions, we have recorded the cost of the joint plan for each
instance, and compared our plan cost to the cost of plans produced using state-of-the-art
(multi-agent) planning systems.

Of course, the objective of the coordination problem (defined in Chapter 2) is to
maximize individual-agent planning autonomy (apart from ensuring coordinated plans,
of course), not to minimize plan cost. Our justification for maximizing autonomy — apart
from the fact that agents might want to act independently of other agents — is that we
expect that, if agents have a lot of planning autonomy, then they will be able to construct
cheap plans; restrict the agents’ planning autonomy, and these cheap plans may become
infeasible, as we have argued in Chapter 5.

In this chapter we put the above hypothesis to the test. In particular, we investigate
whether, when using the partitioning strategies of the previous chapter, more plan splits
(resulting in more precedence constraints) increases the cost of the resulting plan.

We also compare our pre-planning coordination approach with state-of-the-art central-
ized planning systems. We will show (i) that our coordination approach is competitive with
the best centralized planners, (ii) that the performance of less efficient planning systems
can be improved by making use of pre-planning coordination, and (iii) that single-agent
planning tools can be ‘upgraded’ to solve multi-agent planning problems.

The comparisons in this chapter are carried out on the basis of a benchmark set of logis-
tics instances taken from the AIPS2 2000 competition (the AIPS competition is described
in [1]).

6.1 Test Setup

We will judge the quality of an approximate coordination solution in terms of the quality
of the joint plan. Figure 6.1 illustrates that, in order to find the joint plan, we need more

1The original quotation is from Thomas H. Huxley.
2Artificial Intelligence Planning and Scheduling
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Planning Planning

Step 1: Task Allocation

in: n−city instance

p1 p

Step 3:

npi

Step 2: Coordination

Step 4: Synchronizing Local Plans

out: joint plan

Figure 6.1: The computational steps performed to solve a logistics instance.

than a coordination algorithm: we need to allocate tasks, construct local plans and merge
the local plans into a joint plan.

The input for Step 1, task allocation, is a logistic n-city instance from the AIPS dataset.
Given a n-city instance, we can identify and allocate tasks as described in Chapter 5. Since
there is only one allocation of tasks to agents possible for the n-city problem, this step can’t
influence the quality of the joint plan. This means that we do not need to find a ‘best’
task allocation.

The coordination step, Step 2, is accomplished by using Algorithm 9, instantiated
with one of the three policies of Section 4.3.3. Recall that Algorithm 9 coordinates by
partitioning agent task sets Ti into segments {Ti1 , . . . , Tim}, such that all tasks in Tij are
executed prior to tasks in Tij+1 . In sections to follow, we will often refer to the policies of
Section 4.3.3, so we list them again below for reference.

Recall that in Algorithm 9, one agent schedules a (maximal) segment of tasks in each
iteration of the algorithm. To determine which agent will schedule the next segment, we
can use one of these three policies:

Policy 1: before the start of the algorithm, a random ordering of agents is made. In each
iteration of the algorithm, the next agent in the ordering is asked to schedule his next
segment. After the last agent in the ordering has scheduled his segment, the next
agent to schedule is again the first in the ordering.

Policy 2: after all agents have built their segment Tik , all agents evaluate the following
term:

|Tik |
|Ti|

In words, the size in tasks of the current segment relative to the size of the entire local
set of tasks. The agent with the highest value is instructed to schedule his segment.
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Policy 3: similar to 2, but now all agents must evaluate the term:

|(
⋃

j 6=i{Tj × Tik})∩ ≺ |
|(

⋃
j 6=i{Tj × Ti})∩ ≺ |

in words, the number of inter-agent precedences satisfied by segment k divided by
the total number of inter-agent precedences.

Once coordination is done, each agent can find a plan for his local goal, independently
of the other agents, in Step 3. After coordination, an agent’s goal is given by a sequence
of segments. Each of the segments, containing a set of tasks, is an (unconstrained) one-
city instance (as defined in Definition 5.3.3). An agent makes a concrete plan (a visiting
sequence) for each segment. The entire local (concrete) plan for the agent is formed simply
by concatenating the segment plans. For example, if an agent makes segment plans (1, 2),
(2, 4) and (3, 1), then the agent’s entire plan becomes (1, 2, 4, 3, 1). Note that segment
plans 1 and 2 ‘fit’: the end location of the first segment, location 2, is the same as the start
location of the second segment. Segments 2 and 3 do not fit; the agent needs to perform
one extra action to move from location 4 to location 3. In Appendix A, we have described
how we can find a visiting sequence for the one-city problem of Definition 5.3.3.

The local segment plans we calculate are optimal. In this way, we know that any extra
cost in the joint plan can be attributed to the inefficiency of the coordination solution.3

In Step 4, we form the joint plan. The cost of the joint plan is determined by the cost
of the local plans. Using Definition 5.3.2 of the cost of a plan, we say that the cost of a
plan is the sum of the costs of the actions in that plan. The set of actions in the joint plan
is simply the union of the actions of the local plans. Therefore, we do not need Step 4 to
determine the cost of the joint plan, which is why we dashed Step 4 in Figure 6.1. Section
5.4 describes how we can find a feasible schedule for the set of concrete plans.

If we want to know how far the cost of an approximate joint plan is removed from the
optimal joint plan, we need to know the cost of the optimal joint plan. Unfortunately,
to know the cost of the optimal plan, we need to find the optimal plan. Finding optimal
solutions for all AIPS instances proved too time-consuming. However, we have been able to
find a lowerbound on the cost of an optimal solution: if we let all agents find optimal plans
for their (unconstrained) initial goal, then the cost of the resulting (probably infeasible)
joint plan is at least as low as the cost of the optimal solution.

For all problem instances, we now have both the cost of the actual solution and a
lowerbound on the cost of the optimal solution, so we can define a ratio that indicates how
far the actual solution is removed from the optimal solution. This relative performance
ratio r, which we will call overhead or inefficiency, is given by:

r =
c− c∗

c∗

with c the cost of the actual solution and c∗ the cost of an optimal solution for the uncon-
strained goal.

3Calculating optimal segment plans is NP-hard, but it is just doable using the solvers specified in
Appendix A.
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6.1.1 Hypotheses

For the relative performance ratio r to be a good indicator of the distance between the
optimal solution and the actual solution, it is required that the ratio between the optimal
solution and the lowerbound is more or less the same for all instances. However, we suspect
that for instances with a (relatively) high number of orders (packages to be delivered) the
values of the optimal solution and the lowerbound diverge slightly, since for such instances,
more coordination (i.e., more constraining) is required for the optimal solution, but not for
the lowerbound on the optimal solution. Thus, we formulate the following hypothesis:

Hypothesis 1: If, for a given infrastructure, the number of inter-city orders increases,
then the cost of the optimal solution diverges from the cost of the solution for the
unconstrained instance.

We will not actively investigate Hypothesis 1. Rather, it is something to keep in mind
when we discuss the results.

The focus of this chapter is the study of the relationship between plan cost and number
of splits. As described in Chapter 5, partitioning a goal into segments can increase the cost
of the optimal plan. If a set of tasks is partitioned into d segments, then the cost of the
plan can be as much as d times the cost of the optimal plan [27]. This ratio can be reached
if all work done for the unsplit plan is repeated for the plans for each of the segments.

We expect, however, that only a portion of the work must be redone for each additional
segment. Also, note that if there are currently k segments, and we split off segment k + 1,
then we can only redo work that was done for segment k. We thus expect that for each
additional segment, the amount of work that must be redone becomes less. This leads us
to the following hypothesis:

Hypothesis 1: The cost of the plan increases sublinearly with the number of segments.

6.2 Running the AIPS Dataset

The AIPS2000 data contains different sets of logistic instances. We have tested our coor-
dination policies on the set of the largest instances, which consists of 170 instances. All
instances are very similar and can be characterized by the following:

• the smallest instance has 6 cities, the largest 34;

• every city has two locations, one of which is an airport;

• in every city, there are three packages, all of which are initially at the non-airport
location

6.2.1 Results

We have summarized the results of applying the setup of Figure 6.1 to the AIPS dataset
in three types of graphs. In Figures 6.2 and 6.3, we show joint-plan cost; in Figures 6.4
and 6.5, we show how many times the agents’ task sets have been split up; in Figures 6.6
and 6.7, we analyze the plane agent.
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Figure 6.2: The joint-plan cost, in terms of the number of moves, produced by each of the three
policies.

Figure 6.2 compares the joint-plan cost produced by each of the three policies (actually,
produced by the setup of Figure 6.1 instantiated with one of the three policies, but we will
sacrifice correctness in favor of clarity). For the majority of the 170 problem instances,
Policy 1 just outperforms Policy 2, while both are significantly more efficient than Policy
3.

In Figure 6.3, we compare the joint-plan cost produced by Policy 1 to that of TALplan-
ner, (generally) the most efficient of the planning systems competing in the AIPS 2000
competition. On all but one or two instances, Policy 1 outperforms TALplanner. Note
that in Figure 6.3, we measure joint-plan cost in terms of the number of actions — consist-
ing of move, load, and unload actions — instead of in the number of moves. Although we
haven’t actually generated plans containing load and unload actions, we have calculated
the number of load/unload actions required by our plans: one load and one unload action
for each task. This doesn’t make our comparison with TALplanner unfair, because (i)
loading and unloading does not make the problem harder given the fact that vehicles have
unlimited capacity, and because (ii) the plans produced by TALplanner do not contain
more load and unload actions than necessary.
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Figure 6.3: The joint-plan cost in terms of the number of actions (move, load and unload actions),
produced by Policy 1 and by TALplanner.

In Figure 6.4, we compare the number of truck splits each policy generates per instance.
For one agent, we define the number of truck splits as the number of segments minus 1,
i.e., if Ti = {Ti1 , . . . , Tik}, then agent Ai has made k − 1 splits. It turns out that for most
instances, Policy 1 requires the most truck splits, Policy 3 the least, with Policy 2 exactly
between them. In Figure 6.5, it may seem as if only two policies are compared, but Policy
1 and Policy 2 overlap, each requiring exactly one plane split for every instance.
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Figure 6.4: The number of truck splits generated per instance.
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Figure 6.5: The number of plane splits generated per instance.
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In Figures 6.6 and 6.7 we show the relation between the number of splits and the
inefficiency of the policy. For Policies 1 and 2, no relation between overhead and number
of splits could be discerned whatsoever; the results was only a cloud of datapoints. For
Policy 3, however, a sublinear relation emerges. In Figure 6.6, where data from both the
plane agent and from all truck agents are shown, there are a number of outliers with regard
to this pattern. Separating the plane agent in Figure 6.7, the spreadsheet program used is
able to fit a logarithmic function to the data.
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Figure 6.6: The amount of overhead generated by Policy 3 per agent: data points are pairs
< number splits, overhead > per agent per instance.
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Figure 6.7: The amount of overhead generated by Policy 3 for the plane agent: data points are
pairs < number splits, overhead > for the plane agent per instance.
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6.2.2 Discussion of AIPS results

Figure 6.2 shows that Policy 1 performs marginally better than Policy 2, while Policy 3
performs significantly worse than either. In Figure 6.3 we can see that Policy 1 also just
outperforms TALplanner. For us, however, the most interesting thing is to find out whether
we can discern some relation between the number of segments needed and the overhead
generated.

Number of segments

Truck splits Plane splits Total splits
Policy 1 2413 170 2583
Policy 2 2096 170 2266
Policy 3 1447 742 2189

Table 6.1: AIPS dataset: number of splits generated by each policy.

The total number of splits required by policies 1, 2 and 3 for the entire dataset are
respectively 2583, 2266 and 2189. Policies 2 and 3 thus achieve their intermediate objective
of requiring less splits than Policy 1.

Not only do Policies 2 and 3 require less splits, the way in which goals are partitioned
also differs. Policies 1 and 2 are similar: Both policies partition the goals of most agents
into two segments. Policy 3 meanwhile splits up the plane agent’s goal into many more
segments, but needs less splits, on average, for the truck agents. The partitioning behaviour
of Policy 3 can be explained as follows. For each agent the ratio r,

r = global precs in candidate segment / total number of global precs

is evaluated to determine which agent will schedule his segment. Suppose that at the start
of coordination only one truck agent has scheduled a segment containing one pre-flight
order. In the next round of coordination, the ratio r will be 0 for the truck agents (since
they can schedule no task with a scheduled preceding task) and 1

x (for some x) for the plane
agent. 1

x > 0, so the plane agent will schedule a segment in which he performs one delivery.
In general, when coordinating using Policy 3, the plane agent and the truck agents will
schedule more or less alternately.

The number of splits required by the truck agents can also be explained from the
alternating pattern of Policy 3. Because the plane agent starts delivering packages (actually,
scheduling segments for the delivery of packages) when only a few trucks have scheduled
a segment, some trucks with post-flight orders will find that all their packages are ready
to be picked up from the airport when they first want to schedule a segment. This means
that if a truck agent is lucky, he can schedule his entire goal in one segment.

Plan cost

Table 6.2 contains the total number of moves each policy needed for the entire dataset.
We expected that, by using less segments, Policies 2 and 3 would outperform Policy 1,

i.e., we expected that Policies 2 and 3 would result in plans with lower cost. The reverse is



6.2. RUNNING THE AIPS DATASET 81

Truck moves Plane moves Total moves
Policy 1 6759 5487 12246
Policy 2 6907 5905 12812
Policy 3 8181 8917 17098

Table 6.2: AIPS dataset: number of moves generated by each policy.

true: Policy 1 with the most splits has the lowest number of moves, whereas Policy 3 with
the least splits has the highest number of moves.

The performance of policies 2 and 3 can be explained by looking at the optimal solution.
The structure of the AIPS dataset is such that we can specify a simple coordination protocol
(the arbiter0 protocol described in [29]) that always yields the optimal solution. The
arbiter0 policy coordinates in three steps:

1. All trucks schedule their pre-flight and intra-city tasks.

2. The plane agent schedules his tasks.

3. All trucks schedule their post-flight tasks.

When coordinating general logistic instances with the arbiter0 protocol, inefficiency can
only occur if (truck) agents could have combined intra-city or pre-flight orders with post-
flight orders (Example 6.2.1). For the AIPS dataset, this situation never occurs, since all
intra-city and pre-flight orders go from the non-airport location to the airport location and
post-flight orders go in the opposite direction.

ap

3 42

pre−flight

post−flight

Figure 6.8: A one-city truck goal for which Arbiter0 is inefficient.

Example 6.2.1. In Figure 6.8, one city is depicted with four locations: the airport and
locations 2, 3 and 4. The truck agent has three pre-flight orders and three post-flight orders.
An optimal local plan, using arbiter0 coordination, is the visiting sequence (2, 3, 4, 1, 2, 3, 4).
However, if all post-flight packages can be immediately picked up, then it is possible for the
truck to be unconstrained, which results in an optimal visiting sequence (1, 2, 3, 4, 1).

The behaviour of Policy 1 closely resembles the optimal protocol. Recall that at the
start of coordination, Policy 1 determines a random scheduling order; in our implementa-
tion we have simply used the order in which agents appear in the AIPS datafile. If the plane
agent is either at the start or the end of the scheduling order, then Policy 1 implements
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the arbiter0 protocol. For instance, if the plane has to schedule last, then all trucks will
have scheduled their pre-flight orders when the plane has to schedule its segment. Thus
all precedences for the plane have been scheduled, so he schedules his entire set of tasks at
once. In the subsequent rounds of coordination, the trucks can schedule all their post-flight
tasks in the same segment, since all flight tasks have been scheduled.

If the plane agent appears in the middle of the scheduling order, the chance of ineffi-
ciency is the highest: For the plane, half of the packages can’t be picked up yet, so locations
might have to be revisited later. For the trucks, not all post-flight orders can be delivered
the first time, and, since trucks will schedule these packages before the other packages can
be picked up, this results in extra trips to and from the airport.

In the AIPS dataset, the plane has to schedule when about 20 percent of the trucks
have scheduled their segment. Policy 2’s behaviour is, for the logistics domain, similar to
that of Policy 1, only for Policy 2 the plane agent usually schedules the first segment when
about 50 percent of the trucks have scheduled their segment. This explains why Policy 2
performs marginally poorer than Policy 1.

Policy 3 partitions the goal of the plane-agent into many segments — sometimes as
much as twelve. Consequently, the quality of the plane’s plan is poor. This results in very
poor overall performance, because the quality of the plane-plan significantly affects the
quality of the joint plan for two reasons. First, the plane’s goal is by far the largest; for the
AIPS data, the plane has nearly half the number of tasks of all trucks together. Second,
a poor plane plan affects truck plans. If a truck has three post-flight packages and the
plane delivers them one by one, then, using our policies, the truck will also deliver these
packages one by one. Because of this, Policy 3 needs more truck-moves than Policies 1
and 2, despite the fact that Policy 3 produces significantly fewer truck-splits. The smaller
number of truck-splits means that many truck agents have no splits at all for Policy 3,
against 1 for Policies 1 and 2. However, this does not make these trucks’ plans cheaper,
because Policies 1 and 2 split their pre-flight from their post-flight tasks, which does not
result in overhead.

So, in general, our hypothesis that fewer splits means lower cost plans has not been
confirmed. However, looking at Policy 3 alone, we do see the desired pattern emerging.
In Figure 6.6, the overhead per agent is plotted against the number of splits per agent
for Policy 3. Figure 6.7 shows that the sub-linear pattern is due to the plane agent. The
handful of outliers in Figure 6.6 that show a linear pattern are due to truck agents with
separated post-flight deliveries. The plan cost of these outliers sometimes reaches the factor
d (d segments) times the optimal plan cost. For instance, Figure 6.6 shows that there is
one agent with 4 splits and an overhead of 4, meaning that in addition to the optimal plan
cost, this agent needs another 4 times the optimal plan cost. This level of inefficiency can
be reached if the truck has a sufficient number of post-flight packages that are delivered
one by one. The plane agent does not show this linear relation, because for the plane it is
unlikely that in each segment all previous work will be repeated.

6.3 A Random Dataset

The results so far are not entirely what we expected, but we feel the results are influenced
by the rigid structure of the AIPS data. Therefore, we have created a new set of random
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n-city instances. The sort of instances that are contained in this new dataset are given
in Table 6.3. In Table 6.3, problem classes are characterized x y z, with x the number of
locations per city, y the number of orders and z the number of cities.

From To
x y z x y z

strand 1 10 25 5 10 49 5
strand 2 11 27 5 11 54 5
strand 3 12 30 5 12 59 5
strand 4 20 70 7 20 139 7
strand 5 21 73 7 21 146 7
strand 6 7 14 4 7 27 4
strand 7 8 24 6 8 47 6

Table 6.3: A dataset of random logistic instances.

For Policy 1 we again use as random scheduling order the order of the agents in the
data files. For this dataset the plane is at the back of the order (a coincidence), which
means that Policy 1 implements the arbiter0 protocol.

We show more or less the same graphs for the random dataset as we did for the AIPS
dataset. Figures 6.9 and 6.10 show the number of splits required by respectively the trucks
and the the plane. In Figure 6.11 we show the overhead generated by each of the policies,
for all instances in the dataset. In Figures 6.12 and 6.13, we show the relation between
overhead and number of splits for Policy 3.
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Figure 6.9: The number of truck splits generated per instance.
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Figure 6.10: The number of plane splits generated per instance.



6.3. A RANDOM DATASET 85

0

0.2

0.4

0.6

0 50 100 150 200 250 300

Policy 1 Policy 2 Policy 3

Figure 6.11: The overhead generated per instance.
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Figure 6.12: The amount of overhead generated by Policy 3 per agent: data points are pairs
< number splits, overhead > per agent per instance.
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Figure 6.13: The amount of overhead generated by Policy 3 for the plane agent: data points are
pairs < number splits, overhead > for the plane agent per instance.

6.3.1 Interpretation of random dataset results

The relative performance of the three policies is the same for the random dataset as it is
for the AIPS dataset. That is, Policy 1 is slightly better than Policy 2, while both are
superior to Policy 3. The expected relation between the number of splits and the overhead
generated is even less apparent than it was for the AIPS results, however.

Number of segments

The total number of splits required for the policies is given in table 6.4.

Truck splits Plane splits Total splits
Policy 1 1618 0 1618
Policy 2 1622 266 1888
Policy 3 2115 649 2764

Table 6.4: Random dataset: number of splits generated by each policy.

Now Policy 1 needs the least number of splits and Policy 3 the most, which is opposite
to the situation for the AIPS data. Similar to the AIPS data, Policy 3 needs the most
splits for the plane agent, but now Policy 3 also needs the most splits for the trucks; on
average that is, because for a few instances Policy 3 needs less.

Note that Policy 1 does not require any plane splits because it implements the arbiter0
protocol. Policy 1 therefore also uses exactly one split for every truck agent. On average,
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and for most instances, Policy 2 also uses one split per truck, occasionally using two or
none.

Plan cost

In Table 6.5 are the total number of moves each policy needed for the entire random
dataset.

Truck moves Plane moves Total moves
Policy 1 30731 2386 33117
Policy 2 30570 3719 34289
Policy 3 31589 5643 37232

Table 6.5: Random dataset: number of moves generated by each policy.

Perhaps surprisingly, the number of truck moves required by the three policies does not
differ much; most of the difference in performance comes from the plane plan. Policy 3 has
about 30 percent more truck splits than policies 1 and 2, but only about 3 percent more
truck-moves. Policy three has 140 percent more plane splits than Policy 2 and about fifty
percent more plane moves.

The fact that a plane split seems to induce much more overhead than a truck split can
be explained by comparing the local goals of a plane agent to a local goal of a truck agent.
In the random dataset, the truck agents always cover more locations than the plane agent
(our one-city solver was not up to larger plane regions, i.e., more cities), because there
are always fewer cities than there are locations per city. Also, most orders are inter-city
orders. If there are x cities, then the probability that an order is an intra-city order is
roughly 1

x (depending on whether we count the plane’s region as a city). This means that
1 − 1

x part of the orders results in a task for the plane, against 2
x for a truck agent. So,

the plane agent has more orders than the truck agents, spread over fewer locations. This
means that there is much scope for executing tasks in parallel, i.e., many deliveries can be
made with a short visiting sequence. This also means that if the goal is segmented, then
much parallelism will be lost as the plane agent repeats actions in separate segments.

From Figure 6.11, we can conclude that an increasing number of orders for an unchanged
infrastructure leads to increased overhead, for all policies. It is possible in Figure 6.11 to
distinguish the several strands of instances as clustered sets of points. Not all strands are
distinguishable, since a couple of strands are very similar and partially overlap in the graph.
Every instance in a strand has one order more than the previous instance (of course, the
orders are also different (random) from the previous instance). Along the horizontal axis,
the instances in a strand are ordered from left to right as the number of orders increases.

We can conclude that the overhead increases linearly with the number of orders, for
all strands and for all policies. This does not necessarily imply that the performance of
the policies degrades with the number of orders. At this point, we need to recall that the
‘overhead’ is defined on the basis of the lowerbound on cost, not on the cost of the optimal
solution. As the number of (inter-city) orders increases, the need for coordination also
increases. It is thus to be expected that an optimal, coordinated solution will also generate
more ‘overhead’ as the number of orders increases.
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The relation between the number of splits and the overhead for Policy 3 is less clear in
figures 6.12 and 6.13 than it was for the AIPS dataset, because there is too little spread
on the x-axis, i.e., there are too few splits. Each city is a source of precedence constraints
for the plane, since each city can produce packages that need to be transported by the
plane. Once all trucks have brought these packages to the airport, there are no precedences
unscheduled and so no more splits to make for the plane. The second dataset has instances
with at most seven cities, whereas the largest instances in the AIPS data has thirty-four
cities. Therefore, it is unsurprising that the plane agent doesn’t need as much splits for
the random instances when compared to the AIPS instances.

6.4 Reuse of Existing Planners using Coordination

Of all the competing planning systems of the AIPS, only TALplanner found low-cost solu-
tions for all problem instances, while needing less than one second of cpu-time. All other
planning systems produced plans of higher cost, and/or needed more cpu-time. Two of
these other planning systems are STAN and HSP [2].4

In this section, we will show that we can improve the performance of both STAN and
HSP by using pre-planning coordination. Without coordination, we run the planner once
on the entire problem instance; effectively, this is a centralized approach to coordination.
Using coordination, we apply the planner to each of the agents’ local problems in turn.

The particular coordination algorithm we apply is partitioning using the arbiter0 policy.
This means that the trucks split their set of tasks into pre- and post-flight orders, whereas
the plane remains unconstrained.

Table 6.6 lists the CPU times and the number of actions produced to create the joint
plan for centralized and distributed STAN, and for centralized and distributed HSP. For
STAN, we see that the already efficient centralized solution is not improved upon by dis-
tributed STAN. Still, a significant reduction in solution time5 can be made (see also Fig-
ure 6.14).

Centralized HSP is too slow to find solutions for the ten largest instances (we imposed
a time limit of ten minutes), indicated by the entries marked ‘-’.6 Distributed HSP, on the
other hand, is significantly faster, and quite capable of solving all instances. Furthermore,
distributed HSP produces much cheaper plans (Figure 6.15). The cost reduction is possible
because the truck problems are now much less complex, so the planner is able to find the
optimal solution quickly.

In Figure 6.16, it becomes clear how much time is saved by using pre-planning coor-
dination. For both STAN and HSP, between eighty and ninety-nine percent of solve time
can be saved by coordinating the agents prior to planning.

4Current research on STAN and HSP can be found at http://planning.cis.strath.ac.uk/STAN/ and
http://www.cs.ucla.edu/∼bonet/, respectively.

5Note that cpu-times for coordinated STAN/HSP are obtained by summing the solution times of all
agents, not by recording the finish time of the slowest agent.

6Note that HSP, both centralized and distributed, also failed to solve a number of smaller instances. This
is due to the fact that the current version of HSP is not yet entirely stable, and produced error messages
on those instances.
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Figure 6.14: CPU times: coordinated STAN vs. uncoordinated STAN, for track 1 (additional
instances) of the AIPS logistics dataset.
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Figure 6.15: Number of actions produced by coordinated HSP vs. uncoordinated HSP, for track 1
(additional instances) of the AIPS logistics dataset.
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Figure 6.16: Percentage of time or actions saved by applying pre-planning coordination to STAN
and HSP.
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problem uncoordinated STAN coordinated STAN uncoordinated HSP coordinated HSP
cpu-time plan cost cpu-time plan cost cpu-time plan cost cpu-time plan cost

log-16-0 0.21 89 0.03 93 4.52 121 0.75 98
log-16-1 0.22 83 0.06 84 4.64 116 0.77 94
log-17-0 0.18 93 0.05 96 4.02 125 0.81 101
log-17-1 0.26 95 0.05 97 4.61 133 0.79 106
log-18-0 0.49 117 0.1 122 7.96 172 1.45 139
log-18-1 0.11 78 0.05 78 5.77 105 0.7 86
log-19-0 0.32 101 0.06 104 12.8 144 0.85 114
log-19-1 0.16 89 0.02 91 - - 0.6 98
log-20-0 0.49 110 0.07 113 19.28 154 1.25 126
log-20-1 0.46 106 0.11 108 14.84 155 0.9 121
log-21-0 0.81 113 0.1 115 14.67 160 1.11 131
log-21-1 0.52 103 0.07 104 18.23 151 1.02 121
log-22-0 1.03 113 0.15 116 69.85 160 1.31 131
log-22-1 1.36 111 0.16 112 27.91 162 1.46 129
log-23-0 1.19 116 0.17 118 - - 1.28 133
log-23-1 0.67 102 0.08 105 22.74 139 1.12 119
log-24-0 2.26 131 0.26 134 33.89 194 2.16 162
log-24-1 3.17 143 0.33 148 55 206 1.88 167
log-25-0 6.18 149 0.45 154 113.92 206 2.33 165
log-25-1 6.34 152 0.39 157 138.88 212 3.04 171
log-26-0 5.4 138 0.59 140 146.34 203 3.62 157
log-26-1 7.7 156 0.57 160 124.92 217 5.21 183
log-27-0 6.45 147 0.4 152 137 206 3.78 165
log-27-1 4.42 139 0.33 143 248.42 195 3.19 157
log-28-0 11.99 171 1.13 174 - - 9.46 191
log-28-1 8.8 157 0.71 161 197.31 216 6.66 181
log-29-0 17.35 184 0.79 189 273.46 265 10.08 220
log-29-1 8.19 155 0.7 160 - - 5.63 173
log-30-0 10.51 177 1.35 184 260.65 250 - -
log-30-1 17.39 189 1.1 193 - - 10.38 214
log-31-0 23.22 184 2.36 188 401.79 269 - -
log-31-1 18.31 181 2.03 186 - - 13.44 207
log-32-0 23.12 186 2.51 193 - - 21.71 213
log-32-1 24.71 190 2.93 194 463.14 282 19.79 216
log-33-0 23.43 186 2.27 192 495.4 279 19.29 213
log-33-1 32.36 200 3.5 206 364.35 283 - -
log-34-0 29.82 199 3.54 205 - - 32.22 226
log-34-1 23.77 193 3.5 198 - - 19.74 219
log-35-0 25.35 182 2.85 185 565.41 264 17.05 212
log-35-1 44.89 195 6.18 197 - - 36.46 233
log-36-0 29.16 196 3.23 199 608.58 278 23.93 218
log-36-1 35.69 215 4.1 222 607.09 317 32.22 248
log-37-0 76.83 228 11.93 235 - - 101.63 259
log-37-1 77.25 228 13.55 234 - - 114.3 270
log-38-0 52.41 214 9.18 220 - - 80.41 241
log-38-1 68.09 209 10.75 215 - - 92.73 237
log-39-0 84.9 227 15.01 234 - - 99.01 261
log-39-1 78.24 219 15.35 225 - - 118.57 262
log-40-0 93.06 232 16.63 237 - - 160.54 267
log-40-1 91.21 225 15.58 229 - - 118.24 256
log-41-0 89.85 242 15.18 246 - - 164.73 281
log-41-1 85.18 245 18.17 252 - - 174.18 279

Table 6.6: Comparing the output of planning systems with and without making use of pre-planning
coordination.
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6.5 Concluding Remarks

The relation between planning autonomy and resulting plan cost is not as general as we
anticipated in Section 6.1.1. For the plane agent, a higher number of constraints (resulting
from a finer partitioning of the agent’s set of tasks) clearly results in poorer plans, but for
the truck agents this relation is not so strong. Especially, as coordination often results in
trucks having to perform their pre-flight tasks prior to their post-flight tasks, plan cost is
hardly affected at all. In hindsight, this is not that surprising after all: for the AIPS data,
the strategy of separating pre-flight from post-flight tasks actually allows optimal truck
plans, while for general logistic instances, this is still a very efficient strategy, as shown
in [29].

We can conclude that, in designing efficient partitioning strategies, it is not sufficient to
concentrate on finding strategies that require a low number of splits. Instead, the specific
problem at hand largely determines whether an additional precedence constraint is harmful
to plan cost or not.

A second conclusion we can draw is that pre-planning coordination is a viable method
to solve multi-agent planning problems. Pre-planning coordination allows us to (re)use
single-agent planning tools on the sub-problems allocated to the agents. The fact that these
sub-problems are typically less complex than the multi-agent planning problem means that
total solve time is reduced (cf. [8]). Also, the cost of the resulting joint plan is typically
lower than the cost of the joint plan produced by a single monolithic planning system.
In theory, applying one centralized planner — corresponding to the agents forming the
grand coalition — could result in the optimal plan being found. In practice, however,
the computational complexity of the multi-agent planning problem is such that only a
sub-optimal plan can be found in reasonable time.



Chapter 7

Conclusions and Future Work

In this thesis, we have studied the coordination of autonomous agents that together have
to complete a joint task, while they wish to keep details of their plans, and of the planning
activity itself, to themselves. The solution method we have proposed is to find, prior to
planning, a minimum set of additional constraints on the agents’ goals.

Curiously, though, this coordination problem has received little or no attention in the
multi-agent coordination literature, even after nigh on thirty years of distributed artificial
intelligence. Naturally, this raises the question whether our research is of any significance
at all. Certainly, if I were a Reader, and I discovered, after almost a hundred pages of
mostly prose as dry as ancient parchment, that the report I have struggled through is
about as relevant as last week’s weather report, I would be positively miffed.

Seriously though, we feel that there are a number of reasons why our research has rel-
evance after all. First, the separation of coordination and planning our approach proposes
immediately yields results, as it enables us to reuse existing single-agent planning tools
to solve difficult multi-agent planning problems. In fact, in Chapter 6, we have shown
that our pre-planning coordination algorithms, combined with our own simple single-agent
planning tools, were capable of outperforming the state-of-the-art (albeit of the year 2000)
multi-agent planning systems.

A second — and more distant — application area of our research is the area of ‘inter-
organizational’ multi-agent systems. Currently, the vast majority of multi-agent systems
(and they are not that prevalent) is located within a single organization. In the future,
however, we can expect a greater part of business operations — including dealings with
other companies — to be automated. Also, if globalization, and consequently special-
ization, continue to increase, then we can expect there to be an increased demand of
inter-organizational multi-agent systems — multi-agent systems in which agents need to
cooperate with other agents for e.g. the production of some good, while remaining au-
tonomous in the planning activity.

To increase the applicability of our framework, we can identify several areas for future
work, of which we will now discuss two. First, there is the issue of timing. Although we
briefly touched on the need to synchronize agent plans in Chapter 5, we were able to dismiss
synchronization and timing as a coordination problem under the assumption that agents
only care about the amount of work they must perform, not about the times at which to
perform it. Obviously, this assumption is unrealistic in many settings; in our multi-modal
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logistics domain, it is for instance unlikely that a plane will delay its departure time with
an hour or so to enable a truck to pick up some packages first. A natural extension to our
framework is then to associate a deadline with the completion of each task, or perhaps a
time window, such that for each task, there is an earliest start-time and a latest completion-
time. Of course, scheduling tasks with deadlines in itself is not a new problem, but it is if
we combine it with planning-autonomy-maximizing coordination.

A second possible extension to our framework is to examine the relation between task
allocation and coordination. Clearly, if we can allocate tasks in such a way that there are
no dependencies between agents, then there is no need to coordinate, either. However, if
inter-agent dependencies are unavoidable, we can formulate the following problem: how to
allocate tasks to agents, such that the subsequent coordination process requires a minimum
number of additional constraints?

Of course, it is possible to identify other areas of future work; every multi-agent ap-
proach ever published is based upon a number of simplifying assumptions, such as de-
terministic outcome of actions, and environments that are restricted in the way they are
‘allowed’ to change. Thus, to fill the future-work paragraph, it is only too easy to coin
a phrase like ‘dynamic environment’, and to point out that, in real life, circumstances
change. Circumstances do change, of course, but even though some degree of dynamism
might well be taken into account in our framework, we must guard against trying to fit
all of reality into one model, for otherwise coordination would become even more complex
than it already is. Even now, with a framework that some may consider too simplistic, the
computational complexity of coordination is Σp

2-complete (see Chapter 3). Also, as Dur-
fee [7] points out, no coordination algorithm can be all things to all men; there is simply
a limit to what one model of reality can contain.

As far as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer to reality. — Albert Einstein



Appendix A

Solving the One-City Problem

Presenting the empirical results in Chapter 6, we assumed that agents make optimal local
plans. The local problem (for all agents, including the plane agent) is the one-city problem
(Definition 5.3.3) which we discussed in Chapter 5. Recall that the one-city problem is to
pick up and deliver packages to and from locations, where any location can be reached from
any other location. Also, we assume that the transporting vehicle can carry an unlimited
number of packages at the same time.

A one-city instance I = (L,O) is characterized by a set of locations L and a set of
orders O ⊆ L × L. The set L is actually superfluous, since we assume that L does not
contain any unused locations:

∀l ∈ L : l ∈ ran(O) ∨ l ∈ dom(O)

An approximate solution that is valid for all one-city instances is the following [29]:
First all locations are visited once in an arbitary order to enable pickup of all packages.
Second, all locations are visited again in an arbitrary order, which allows delivery of all
packages. For most instances, however, we can find a solution that does not visit all
locations twice.

For any solution, all locations must be visited at least once (since there are no unused
locations in L). Visiting all locations once, in whatever order, is clearly not sufficient
though for some instances. If we have two orders (A,B) and (B,A), then either location
A or location B must be visited twice. Thus, some locations must be visited twice. An
optimal solution (a minimum length visiting sequence) minimizes the number of locations
that needs to be visited twice.

Given the set of orders O and the set of locations L, we can define the directed order-
graph GO = (L,O). Thus, vertices in GO are the locations, the arcs are the orders between
those locations. An example order-graph is shown in Figure A.1.

Gven a cycle C = l1− · · · − ln− l1 in GO, every location in C is both a pickup-location
and a delivery-location. In a visiting sequence V S enabling execution of all orders, one
location li ∈ C, i = 1, . . . , n must appear before all other locations in C. For this li, this
means that the order from li−1 to li cannot be delivered on the first visit to li. Thus, li
must appear once more in V S. Hence, for every cycle in the order-graph, at least one
location must be visited twice.

To determine which locations need to be visited twice, we need to find a set L′ ⊆ L of
locations such that for every directed cycle C in GO, L′ contains at least one location in C.
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Orders:
(A,B)
(A,C)
(B,C)
(B,A)

A

BC

Figure A.1: A set of orders and the order-graph

In other words, we need to find a feedback vertex set for the order-graph (see Chapter 3
for the definition of the feedback vertex set problem).

Given a feedback vertex set for the order-graph, finding a visiting sequence is easy.
First, we construct the graph G/F : Let G/F be the directed acyclic graph (dag) that
results when each vertex v in F is split into vi and vo, such that all edges (v, j) ∈ O are
replaced by edges of the form (vo, j) and all edges (j, v) ∈ O are replaced by edges of the
form (j, vi) (cf. [16]). Figure A.2 shows an example of a graph G/F .

a b

v

v
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o

Figure A.2: (a): Directed graph G, (b): directed graph G/F , i.e., the graph for which each vertex
in F is split in two.

Since G/F is a dag, the set of arcs in G/F induces a partial order on the set of vertices.
By making a topological sort, a partial order can be extended to a total order. Any total
order for the vertices in G/F corresponds to a valid visiting sequence: Locations appear
in the ordering in such a way that if (i, j) ∈ O, then there is an appearance of i before an
appearance of j in the ordering.

In the above we have described the Turing-reduction from the one-city problem to
the feedback vertex set problem. Algorithm 13 gives a more concise description of the
reduction.

Algorithm 13 One-City ≤T FVS
1: Input: GO = (L,O), a directed graph.
2: Output: minimum-length visiting sequence V S
3: F = FVS(GO)
4: construct G/F = (L′, O′)
5: construct topological sort s for (L′, O′)
6: Return s
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To implement Algorithm 13, we need a solver for the feedback vertex set problem
(which is NP-hard). Our choice was to encode the FVS problem as a set of Integer Linear
Programming (ILP) constraints, in the following way:

1. Find the set C of all cycles in GO.

2. For every C = l1 − · · · − ln − l1 ∈ C, encode the constraint:

xl1 + · · ·+ xln ≥ 1

3. All xli can take the values 0 or 1.

4. The objective function is: Minimize
∑|L|

i=1 xli

The constraints in 2 signify that for each cycle, there must be at least one variable that
is assigned the value 1. The feedback vertex set is given by those variables that have value
1. The locations in the feedback arc set must be visited twice, all other locations can be
visited once.

In step 1 of our ILP encoding, we find all cycles in GO. Since a graph may contain an
exponential number of cycles, our encoding might take exponential time. Also, because
we encode a constraint for every cycle, we create an exponential-size ILP instance. Since
polynomial-size ILP instances can already require exponential solve time, using our ILP
encoding we no longer have a Turing reduction, which requires that, apart from the finding
of the feedback vertex set (in our case, using ILP), the reduction algorithm must run in
polynomial time.

To construct a visiting sequence, given a feedback vertex set F , our implementation
differs slightly from the specification of Algorithm 13.1 Instead of constructing the graph
G/F and creating a topological sort, we build a visiting sequence using Algorithm 14.

Input for Algorithm 14 are the sets O (orders), L (locations) and F (locations that
need to be visited twice). Starting from an empty visiting sequence V S, each iteration of
the algorithm adds one location from either F or L and removes this location from the
respective set. Before the algorithm starts iterating, we first construct the inverse order
matrix M . An entry M [i][j] is true if (i, j) ∈ O−1, otherwise M [i][j] is false. The matrix
M is used to check, for a certain location li, if there are locations lj (i, j ∈ {1, . . . , n}) that
must appear in the visiting sequence V S before an occurence of li. If M [i][j] is true, then
there is an order from lj to li, and lj is not yet in V S. Thus, before the final visit to li, we
must visit lj to pick up the package.

At the start of each iteration, we find the set L′ of locations. L′ contains those locations
li ∈ L for which all locations lj , (lj , li) ∈ O are already in V S. This means that a visit to a
location in L′ need not be delayed (any longer), because all packages that must be delivered
to locations in L′ have been picked up. If L′ is non-empty, we can extend the V S with
any of the locations in L′. If L′ is empty, on the other hand, then we must increment the
visiting sequence with an arbitrary element from F . A visiting sequence has been found
once all locations in F and L have been added to V S.

1The circumstances leading to the discrepancy between the specification and the implementation of
Algorithm 13 are comparable to — perhaps I should say: exactly like — a student writing code specification
only after the code has been written.
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Algorithm 14 buildVisitingSequence
1: Input: Set of locations L, set of orders O, feedback vertex set F
2: Output: Visiting sequence V S
3: M [][] = false
4: for all (l1, l2) ∈ L× L do
5: if (l2, l1) ∈ O then
6: M [l1][l2] = true
7: end if
8: end for
9: V S = ∅

10: n = |L|
11: while F ∪ L 6= ∅ do
12: L′ = {l ∈ L|∀1 ≤ i ≤ n : M [l][i] == false}
13: if L′ 6= ∅ then
14: Let nextloc ∈ L′

15: L = L \ {nextloc}
16: else
17: Let nextloc ∈ F
18: F = F \ {nextloc}
19: end if
20: V S = V S+ nextloc
21: ∀1 ≤ i ≤ n: M [i][nextloc] = false
22: end while
23: Return V S



Appendix B

Source Code for Partitioning

In Chapter 4, Section 4.3.3, we presented the coordination-by-partitioning approach as a
centralized algorithm, in which input from a number of (distributed) agents is requested.
Our aim was to empirically determine the efficiency of various partitioning strategies the
agents might follow. Of course, to test a strategy, we need not actually implement a
distributed system. In fact, we have implemented the whole coordination algorithm using
a single thread of control: a main function initializes the agents, starts the the protocol
(in which agents are activated one at a time), and handles the result.

Our choice of programming language was C++, having the power of C, yet enabling
reuse through object-orientation (OO) techniques. In particular, we had in mind a system
in which a new agent strategy could be created simply by subclassing the main agent class.
Admittedly, though, the final implementation has turned out to be a great deal more ad
hoc than that, as we will explain in Section B.2.

B.1 The Protocol

The code for the coordination protocol is contained within the same file as the main subrou-
tine. A large part of this file — the methods writeLine, writeOutput, read number agents,
and readInput are all concerned with either reading the problem instance (consisting of
complex task plus task allocation), or writing the results (the partitioning T of T ) re-
spectively from and to file. In addition, the main-file contains one additional auxilary
method, growTempStore, which is used to inelegantly manage memory, within the method
readInput.

The routine main itself contains the code for the protocol. First, however, it creates
the agents, instances of the class HeuristicAgent. Agents are initialized with (i) their part
of the complex task, i.e., the tasks they have been allocated and, for each task, the tasks
on which that particular task is dependent (including tasks allocated to other agents), and
(ii) a pointer to the global store done.

The global store is implemented as a bitvector, in which each bit corresponds to a task
in T . If a bit is set, then this means that the corresponding task has been scheduled in some
segment by the agent to which the task has been allocated. Even though all agents have
unrestricted access to the global store, mutually exclusive access is guaranteed because at
most one agent is busy at a time.

99
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The coordination protocol itself is implemented in a while-loop, which mirrors the
specification given in Algorithm 9: until all tasks have been scheduled, an iteration is
started in which all agents are first invited to build a candidate segment, after which a
sub-routine pickSegment is called to determine which agent will schedule next.

/* FILE: main.cpp

main reads input from a file, runs the agents sequentially

and stepwise, and outputs the results

input:

number_agents

local_task1 prec1,1 ... precm,1 0 (0 is end of line symbol)

..

local_taskn prec1,n ... precl,n 0

-1 (end of agent symbol)

.. (following agents)

file ends with -1

output: same as input, except:

- local tasks are clusterd, from top to bottom, by segment:

(first segment, first agent)

local_task1,1 prec1,1,1 ... precm,1,1 0

..

local_taskn,1 prec1,n,1 ... precl,n,1 0

-2 (segment separator)

.. (next segment..)

*/

//DOESN’T WORK WITH EMPTY AGENTS

//FUNCTION GROW TEMPSTORE STILL BUGGED

//#define DEBUG

#define MEMCHECK

#include <iostream>

#include <fstream>

#include <string>

#include <time.h>

#ifndef INTREEKS_H

#include "Intreeks.h"

#include "Intreeks.cpp"

#endif

#ifndef BITVECTOR_H

#include "BitVector.h"

#include "BitVector.cpp"

#endif

#ifndef HEURISTICAGENT_H
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#include "HeuristicAgent.h"

#include "HeuristicAgent.cpp"

#endif

#define TASKS_PER_AGENT 20

using namespace std;

typedef IntArray* p;

int readInput(ifstream &file, int num_agents);

int read_number_agents(ifstream &file);

void writeOutput(IntArray*, int, char*);

void writeLine(ofstream&, int, int);

void displayMatrix(int);

void displayResults(IntArray*);

void displayTempStore(int, IntArray*);

int growTempStore(int);

//global variable, modifiable by readInput

//containing the task matrix for all agents

IntArray **ptasks;

//this IntArray is used for memory management:

//when deleting ptasks, it has to be known

//how many IntArrays each agent used

IntArray num_tasks_per_agent;

//array of agents

HeuristicAgent *pagent;

int number_agents;

int heuristicmode;

int growTempStore(int oldsize, int index, IntArray *&temp_store)

//copy temp_store to a new, larger IntArray

{

IntArray *tmp = temp_store;

int i;

int size = index * 2;

temp_store = new IntArray[size];

//copy array elements

for(i = 0; i < oldsize; i++)

{

int lengte = tmp[i].getElementCount();

for(int j=0; j < lengte; j++)

{

temp_store[i][j] = tmp[i][j];

}

}

//delete the array pointed to by tmp

delete [] tmp;

return size;

}
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void writeLine(ofstream &out, int agent_index, int task_index)

//write a single line of output to file

{

int linelen = ptasks[agent_index][task_index].getElementCount();

for(int i=0; i < linelen; i++)

{

out << ptasks[agent_index][task_index][i] << ’ ’;

}

out << "0\n";

}

void writeOutput(IntArray *res, int num_agents, char* filename_out)

//write the results to file

{

int agent, seg, task, segfound, tasknum, number_tasks_written;

ofstream out;

//open files

out.open(filename_out);

out << num_agents << ’\n’;

for(agent = 0; agent < num_agents; agent++)

{

number_tasks_written = 0;

segfound = 1;

for(seg = 1; segfound == 1; seg++)

{

segfound = 0;

//find the number of tasks this agent has to perform

tasknum = num_tasks_per_agent[agent];

for(task = 0; task < tasknum; task++)

{

if(seg == res[agent][task])

{

number_tasks_written++;

writeLine(out, agent, task);

segfound = 1;

}

}

//write segment separator

//to avoid writing a segment separator just before

//the agent separator

if(number_tasks_written < tasknum)

out << "-2\n";

}

//write agent separator

out << "-1\n";

}

out.close();

}

int read_number_agents(ifstream &file)
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//the file is assumed to be already open

//with the cursor at the beginning

{

int num_agents;

file >> num_agents;

return num_agents;

}

int readInput(ifstream &file)

//read the composite task, store it in memory, and

//return the highest taskid that was encountered in the file

{

int num_agents, temp, maxtaskid, i;

int tasks_per_agent;

//lines are first read into temp_store, to

//determine the number of tasks a line contains

//and the number of tasks an agent has to perform

IntArray *temp_store;

int line_counter;

//agent_index keeps tracks of the first dimension of ptasks (agents)

int agent_index;

//reset the file

file.seekg(0);

file >> num_agents;

//allocate memory

ptasks = new p[num_agents];

tasks_per_agent = TASKS_PER_AGENT;

temp_store = new IntArray[tasks_per_agent];

#ifdef MEMCHECK

if(temp_store == NULL)

cout << "out of memory at read_input\n";

#endif

agent_index = 0;

line_counter = 0;

maxtaskid = 0;

while(agent_index < num_agents)

{

//read a number into a temporary variable

file >> temp;

if(temp > maxtaskid)

maxtaskid = temp;

switch(temp)

{

case 0:

{

//end of line (no more precedences for this task)

line_counter++;

} break;

case -1: //end of agent

{

//copy tempstore into ptasks

//if an agent has no tasks, create one empty

//IntArray for him, instead of null

int tmp = (line_counter > 0) ? line_counter : 1;
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ptasks[agent_index] = new IntArray[tmp];

num_tasks_per_agent.addInt(line_counter);

for(i = 0; i < line_counter; i++)

{

int line_length = temp_store[i].getElementCount();

for(int j = 0; j < line_length; j++)

{

ptasks[agent_index][i][j] = temp_store[i][j];

}

}

//update agent count

agent_index++;

//clean up the IntArrays

for(i=0; i < line_counter; i++)

{

int elemcount = temp_store[i].getElementCount();

for(int j=0; j < elemcount; j++)

{

//remove the first element,

//because IntArray moves elements to the

//front when items are removed

temp_store[i].removeIntAt(j);

}

}

//reset the line_counter

line_counter = 0;

break;

}

default:

{

//store the task temp_store

if(line_counter >= TASKS_PER_AGENT)

tasks_per_agent = growTempStore(tasks_per_agent, line_counter, temp_store);

temp_store[line_counter].addInt(temp);

break;

}

}

}

delete [] temp_store;

return maxtaskid;

}

void pickSegment()

{

int i, index;

double cost, mincost;

//splitCost returns a value between 0 and 1

mincost = 1.1;

//determine which agent has the lowest splitting cost

for(i=0; i < number_agents; i++)

{

if(!pagent[i].isDone() && pagent[i].madeProgress())

{
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cost = pagent[i].splitCost(heuristicmode);

if(cost < mincost)

{

index = i;

mincost = cost;

}

}

}

//schedule that agent’s segment

pagent[index].scheduleSegment();

}

int main(int argc, char** argv)

{

char *filename_in;

char *filename_out;

int i;

int maxtaskid;

//used to collect results from the agents,

//once a partitioning has been made

IntArray *results;

IntArray tmp;

//input stream

ifstream input_file;

//output stream

ofstream output_file;

heuristicmode = 0;

//handle the command line parameters:

switch(argc)

{

case 1:

{

filename_in = "input.txt";

filename_out = "output.txt";

}

break;

case 2:

{

filename_in = argv[1];

filename_out = "output.txt";

}

break;

case 3:

{

filename_in = argv[1];

filename_out = argv[2];

}

break;

case 4:

{

filename_in = argv[1];

filename_out = argv[2];
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heuristicmode = atoi(argv[3]);

}

break;

default:

{

filename_in = "input.txt";

filename_out = "output.txt";

}

break;

}

//read input

input_file.open(filename_in);

number_agents = read_number_agents(input_file);

maxtaskid = readInput(input_file);

input_file.close();

//initialize the global store

//size = maxtaskid + 1, because bitvector

//starts counting at 0, whereas tasks start at one

BitVector global_store(maxtaskid + 1);

results = new IntArray[number_agents];

pagent = new HeuristicAgent[number_agents];

//start measuring execution time

long t0 = clock();

//initialize the agents: pass their tasks

for(i=0; i < number_agents; i++)

{

// the pointer to the datastructure

// of the composite-task object is passed to the agent

int num_tasks = num_tasks_per_agent[i];

pagent[i].initialize(num_tasks, ptasks[i], &global_store);

}

int alldone = 0;

//run the algorithm

while(!alldone)

{

//every agent is assumed ready

alldone = 1;

for(i=0; i < number_agents; i++)

{

if(!pagent[i].isDone())

{

//until proven otherwise

alldone = 0;

pagent[i].buildSegment();

}

}

if(!alldone)

pickSegment();

}
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//handle the results of the agents:

//copy the arrays of the agents into results-variable

for(i=0; i < number_agents; i++)

{

pagent[i].getResults(results[i]);

}

//finish measuring execution time

long t1 = clock();

long diff = t1 - t0;

double timeinsec = (double)diff / CLOCKS_PER_SEC;

cout << "coordination algorithm execution time: " << timeinsec << "\n";

//now write the results back to a file

writeOutput(results, number_agents, filename_out);

//free the memory: first the agents

delete [] pagent;

//delete the task matrix

for(i=0; i < number_agents; i++)

{

int lengte = num_tasks_per_agent[i];

delete [] ptasks[i];

}

delete [] ptasks;

delete [] results;

return 0;

}

B.2 Agent Strategy

The following source code is the implementation for partitioning-policies 2 and 3 (of Chap-
ter 4), in which the source code for policy 1 is more or less embedded — namely, in the
method buildSegment. This method builds a (candidate) segment consisting of all tasks
that can be scheduled now. If an agent is indeed chosen to schedule his segment in this
iteration, then the tasks in this segment are ‘set’ on the global store, and the segment-
index is incremented. If another agent is chosen to schedule his segment, then the current
segment will be used as the basis for the next call of buildSegment.

The method buildSegment works as follows: for every task not yet scheduled, it is
checked whether it still has any unscheduled prerequisites (i.e., preceding tasks) left. If not,
then the task can be added to the current segment, and it is locally marked as scheduled,
so that other local tasks can consider this task as scheduled. Also, this means that a task
t that was previously considered unschedulable must be reconsidered, if a newly scheduled
task was a local prerequisite for t.

The method splitCost implements the agent strategy: it returns the heuristically deter-
mined cost of scheduling the current segment, on the basis of which the method pickSeg-
ment (from the main-file) will determine which agent gets to schedule his segment. Method
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splitCost is little more than a switch-statement, however, as it calls either costSegment-
Size or costPrecsSatisfied, depending on whether respectively policy 2 or policy 3 is being
implemented.

Now follows first the code of the header file, followed by the code of the .cpp file.

/* FILE: HeuristicAgent.h

Documentation:

local_precs[][]: a square matrix where the rows and colums both

represent tasks this agent needs to perform. The matrix is

filled with ones and zeros. A 1 in row i, col j means task i

depends on task j, i.e., task j precedes i

global_precs: a matrix where the rows represent the tasks the agent

has to perform, the colums are tasks outside the agent’s control on

which its tasks depend. The matrix is filled with the ids of the

outside tasks.

The task ids of the local tasks are only used for updating the global store,

so they are kept in a separate array, int *taskids. In other cases, the taskid

can be inferred from the row-number in the other datastructures

The array number_segments keeps track of the segment_number a task has been

assigned to. The int segment_number keeps track of the segment that is

currently being scheduled

*/

#ifndef HEURISTICAGENT_H

#define HEURISTICAGENT_H

#define GROOTTE 10

#endif

#ifndef BITVECTOR_H

#include "BitVector.h"

#include "BitVector.cpp"

#endif

#ifndef INTREEKS_H

#include "Intreeks.h"

#include "Intreeks.cpp"

#endif

#include <iostream>

using namespace std;

class HeuristicAgent

{

public:

HeuristicAgent(BitVector *store = 0)

{

done = 0;

//all agents have a pointer to the globalstore

global_store = store;

}
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~HeuristicAgent()

{

//delete the dynamic structures:

delete [] global_precs;

delete [] local_precs;

delete num_global_precs;

//invalidate the pointer to the global_store

global_store = 0;

}

int isDone();

void getResults(IntArray&);

void buildSegment();

void scheduleSegment();

double splitCost(int);

int madeProgress();

//the int (num_tasks) is needed to know

//how many IntArrays are passed

void initialize(int, IntArray*, BitVector*);

protected:

int done;

int number_tasks, segment_number;

IntArray segment_numbers;

IntArray taskids;

//two variables for use in heuristic functions

int total_num_global_precs;

int *num_global_precs;

//and another one, to ensure progress

int tasks_added_to_segment;

IntArray *local_precs;

BitVector *global_store;

IntArray *global_precs;

double costSegmentSize();

double costPrecsSatisfied();

};

//FILE: HeuristicAgent.cpp

#ifndef HEURISTICAGENT_H

#include "HeuristicAgent.h"

#endif

inline int HeuristicAgent::isDone()

{

return done;

}

inline void HeuristicAgent::getResults(IntArray& array)

{

int size = segment_numbers.getElementCount();

for(int i=0; i < size; i++)

{

array[i] = segment_numbers[i];
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}

}

inline int HeuristicAgent::madeProgress()

{

return tasks_added_to_segment;

}

inline void HeuristicAgent::scheduleSegment()

{

int i;

tasks_added_to_segment = 0;

//schedule the current segment

for(i=0; i < number_tasks; i++)

{

if(segment_numbers[i] == segment_number)

{

//put it on the global store

int taskid = taskids[i];

(*global_store).set(taskid);

}

}

//increment the segment number

segment_number++;

//check to see if there is any work left

int unfinishedtask = 0;

for(i=0; !unfinishedtask && i < number_tasks; i++)

{

if(segment_numbers[i] == EMPTY)

unfinishedtask = 1;

}

if(unfinishedtask == 0)

done = 1;

}

inline double HeuristicAgent::costSegmentSize()

//Policy 2

{

int tasksinsegment, i;

double cost;

tasksinsegment = 0;

for(i=0; i < number_tasks; i++)

{

if(segment_numbers[i] == segment_number)

tasksinsegment++;

}

cost = 1.0 - (double) tasksinsegment / (double) number_tasks;

return cost;

}
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inline double HeuristicAgent::costPrecsSatisfied()

//Policy 3

{

int i,j, count;

double cost;

//if there aren’t any global precs, there is no need to delay

//scheduling

if(total_num_global_precs == 0)

return 0.0;

count = 0;

for(i=0; i < number_tasks; i++)

{

if(segment_number == segment_numbers[i])

{

count += num_global_precs[i];

}

}

cost = (double) count / (double) total_num_global_precs;

return 1.0 - cost;

}

inline double HeuristicAgent::splitCost(int mode)

//determines the cost of making a split with the current segment

{

switch(mode)

{

case 0:

{

return costSegmentSize();

} break;

case 1:

{

return costPrecsSatisfied();

} break;

default:

{

return costSegmentSize();

} break;

}

}

inline void HeuristicAgent::buildSegment()

//assigns the current segment number

//to all tasks that can be scheduled now

{

int taskid, row, col, precs_left, i;

//look in global_store to see if some

//global precedences have been scheduled

for(row=0; row < number_tasks; row++)

{

//if the task at global_precs[row][col] is zero, then there

//are no more precs from global_precs[row][col] unscheduled

int size = global_precs[row].getSize();

for(col = 0; col < size; col++)
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{

taskid = global_precs[row][col];

if(taskid != EMPTY)

{

//if the task id at global_precs[row][col] has

//been scheduled, remove it from the global_precs matrix

if((*global_store).isSet(taskid))

global_precs[row].removeNumber(taskid);

}

}

}

//now identify all tasks that have neither local

//nor global precedences left unscheduled

row = 0;

while(row < number_tasks)

{

//task at row hasn’t been scheduled

if(segment_numbers[row] == EMPTY)

{

//any global_precs left?

int global_precs_left = global_precs[row].getElementCount();

if(global_precs_left == 0)

{

//any local precs left?

precs_left = 0;

for(col = 0; precs_left == 0 && col < number_tasks; col++)

{

if(local_precs[row][col] == 1)

precs_left = 1;

//oddly, else seems to be necessary, otherwise

//some other else statements aren’t executed..

else

;

}

if(precs_left == 0) //no local precedence found either

{

//update local_precs

for(int k = 0; k < number_tasks; k++)

{

local_precs[k][row] = EMPTY;

}

//add task to segment

segment_numbers[row] = segment_number;

tasks_added_to_segment = 1;

//restart the outer while loop, because now tasks

//that couldn’t be scheduled at first may be scheduled

row = 0;

}

else

row++;

}

else
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row++;

}

else

row++;

}

}

inline void HeuristicAgent::initialize(int num_tasks, IntArray *task_matrix, BitVector *store)

{

int i, j, index, k, taskid, lengte;

number_tasks = num_tasks;

global_store = store;

tasks_added_to_segment = 0;

//the first task are scheduled in segment number one

segment_number = 1;

//init taskids

for(i=0; i < number_tasks; i++)

{

taskids[i] = task_matrix[i][0];

}

//local precs is a square matrix

local_precs = new IntArray[number_tasks];

global_precs = new IntArray[number_tasks];

//for use in heuristics functions

num_global_precs = new int[number_tasks];

total_num_global_precs = 0;

for(i=0; i < number_tasks; i++)

{

num_global_precs[i] = 0;

}

//now, fill both global_precs and local_precs

//outer for: rows in the matrix

for(i=0; i < number_tasks; i++)

{

//precedences are in the 1 to the nth

//column in task_matrix

lengte = task_matrix[i].getElementCount();

for(j = 1; j < lengte; j++)

{

//find out if task_matrix[i][j] is a local

//or a global constraint

index = -1;

taskid = task_matrix[i][j];

for(k = 0; k < number_tasks; k++)

{

if(taskid == task_matrix[k][0])

{

//task matrix[i][0] is dependent on

//task matrix[k][0]

index = k;

//leave this for-loop
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break;

}

}

if(index == -1) //global precedence constraint

{

global_precs[i].addInt(taskid);

num_global_precs[i]++;

total_num_global_precs++;

}

else //local precedence constraint

{

//i depends on k

local_precs[i][k] = 1;

}

}

}

}



Appendix C

Complexity of Quantified PWFP

In this appendix, we will show that the quantified path with forbidden pairs problem —
the ∃∀¬PWFP problem defined in Chapter 3, Definition 3.4.3 — is Σp

2-complete. This
proof consists of a reduction from QSAT2, a quantified version of 3-SAT that is known
to be Σp

2-complete. This reduction is an adaption of a reduction from 3-SAT to PWFP,
presented in [24]. The difference between Szeider’s reduction and ours is that we deal with
directed graphs.

There are a number of preliminary matters we have to mention before we can present
the reduction:

• In Chapter 3, we defined the negated version of quantified PWFP, i.e., asking for a
solution such that no s− t path exists. To reduce QSAT2 to quantified PWFP, it is
more convenient to use the ‘positive’ version, i.e., asking whether there does exist an
s− t path.

• We will rename the set of forbidden pairs in the PWFP instance, to avoid name-
clashes with the elements of a QSAT2 instance. We will represent a quantified PWFP
instance as: (G = (V,E), F = {F1, F2}, s, t), where F is the set of forbidden pairs
(instead of C).

• Note that ∃∀PWFP is in Σp
2: nondeterministically, guess an exclusive choice X1 for

F1, and verify whether there exists, regardless of the exclusive choice X2 for F2, an
s− t path in the graph G′ = (V,E′), with E′ = (E \ F ) ∪X1 ∪X2. This verification
can be done using an NP-oracle.

• The QSAT2 problem can be defined as follows: Let Y be a set of boolean variables,
{Y1, Y2} a partition of Y , and φ = {C1, . . . , Cn} a collection of clauses, such that each
Ci consists of three literals. Does there exist a truth assignment for Y1, such that for
all truth assignments for Y2, φ is satisfiable?
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Figure C.1: The graph G associated with a three-clause QSAT2 instance.

In transforming QSAT2 to ∃∀PWFP, we associate a sub-graph Gi with every clause Ci,
and then chain these sub-graphs together. The transformation is illustrated in Figure C.1.
Specifically, the transformation from QSAT2 to ∃∀PWFP is specified as follows:

1. For each Ci, we construct the sub-graph Gi = (Vi, Ei), where Vi = {si, vi1 , vi2 , vi3 , ti},
and Ei =

⋃3
j=1{(si, vij ), (vij , ti)}.

2. To connect the sub-graphs Gi, we add the arcs
⋃n−1

i=1 (si, ti+1).

3. We choose s = s1, and t = tn

4. A pair of arcs f = {(si, vij ), (s
′
i, vi′

j′
)} is in F1, if xij = ¬xi′

j′
, and xij ∈ Y1; f is in F2

if xij = ¬xi′
j′
, and xij ∈ Y2.

There is a very intuitive correspondence between a solution for ∃∀PWFP and a solution
for QSAT2: In QSAT2, at least one literal must be true per clause; in ∃∀PWFP, we must
choose one vertex vij to reach ti from si in the sub-graph Gi.
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